Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Search for biocontrol agents among endophytic lipopeptidesynthesizing bacteria Bacillus spp. to protect wheat plants against Greenbug aphid (Schizaphis graminum)

https://doi.org/10.18699/vjgb-24-32

Abstract

Beneficial endophytic bacteria can suppress the development of insect pests through direct antagonism, with the help of metabolites, or indirectly by the induction of systemic resistance through the regulation of hormonal signaling pathways. Lipopeptides are bacterial metabolites that exhibit direct antagonistic activity against many organisms, including insects. Also, lipopeptides are able to trigger induced systemic resistance (ISR) in plants against harmful organisms, but the physiological mechanisms of their action are just beginning to be studied. In this work, we studied ten strains of bacteria isolated from the tissues of wheat and potatoes. Sequencing of the 16S rRNA gene showed that all isolates belong to the genus Bacillus and to two species, B. subtilis and B. velezensis. The genes for lipopeptide synthetase – surfactin synthetase (Bs_srf ), iturin synthetase (Bs_ituA, Bs_ituB) and fengycin synthetase (Bs_fenD) – were identified in all bacterial isolates using PCR. All strains had high aphicidal activity against the Greenbug aphid (Schizaphis graminum Rond.) due to the synthesis of lipopeptides, which was proven using lipopeptiderich fractions (LRFs) isolated from the strains. Endophytic lipopeptide-synthesizing strains of Bacillus spp. indirectly affected the viability of aphids, the endurance of plants against aphids and triggered ISR in plants, which manifested itself in the regulation of oxidative metabolism and the accumulation of transcripts of the Pr1, Pr2, Pr3, Pr6 and Pr9 genes due to the synthesis of lipopeptides, which was proven using LRF isolated from three strains: B. subtilis 26D, B. subtilis 11VM, and B. thuringiensis B-6066. We have for the first time demonstrated the aphicidal effect of fengycin and the ability of the fengycin-synthesizing strains and isolates, B. subtilis Ttl2, Bacillus sp. Stl7 and B. thuringiensis B-6066, to regulate components of the pro-/antioxidant system of aphid-infested plants. In addition, this work is the first to demonstrate an elicitor role of fengycin in triggering a systemic resistance to S. graminum in wheat plants. We have discovered new promising strains and isolates of endophytes of the genus Bacillus, which may be included in the composition of new biocontrol agents against aphids. One of the criteria for searching for new bacteria active against phloem-feeding insects can be the presence of lipopeptide synthetase genes in the bacterial genome.

About the Authors

S. D. Rumyantsev
Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences
Russian Federation

Ufa



V. Y. Alekseev
Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences
Russian Federation

Ufa



A. V. Sorokan
Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences
Russian Federation

Ufa



G. F. Burkhanova
Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences
Russian Federation

Ufa



E. A. Cherepanova
Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences
Russian Federation

Ufa



I. V. Maksimov
Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences
Russian Federation

Ufa



S. V. Veselova
Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences
Russian Federation

Ufa



References

1. Alekseev V.Y., Veselova S.V., Rumyantsev S.D., Burkhanova G.F., Che repanova E.A., Maksimov I.V. Bacteria of the genus Bacillus and their lipopeptides enhance endurance of wheat plants to the greenbug aphid Schizaphis graminum Rond. AIP Conf. Proc. 2021; 2388(1):030001. DOI 10.1063/5.0071841

2. Andrić S., Meyer T., Rigolet A., Prigent-Combaret C., Höfte M., Balleux G., Steels S., Hoff G., De Mot R., McCann A., De Pauw E., Arias A.A., Ongena M. Lipopeptide interplay mediates molecular interactions between soil Bacilli and Pseudomonads. Microbiol. Spectr. 2021;9(3):e0203821. DOI 10.1128/spectrum.02038-21

3. Bindschedler L.V., Minibayeva F., Gardner S.L., Gerrish C., Davies D.R., Bolwell G.P. Early signaling events in the apoplastic oxidative burst in suspension cultured French bean cells involve cAMP and Ca2+. New Phytol. 2001;151(1):185-194. DOI 10.1046/j.1469-8137.2001.00170.x

4. Denoirjean T., Ameline A., Couty A., Dubois F., Coutte F., Doury G. Effects of surfactins, Bacillus lipopeptides, on the behavior of an aphid and host selection by its parasitoid. Pest Manag. Sci. 2022; 78(3):929-937. DOI 10.1002/ps.6702

5. Eid A.M., Fouda A., Abdel-Rahman M.A., Salem S.S., Elsa0935

6. Farzand A., Moosa A., Zubair M., Khan A.R., Massawe V.C.ied A., Oelmüller R., Hijri M., Bhowmik A., Elkelish A., Hassan S.E.-D. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: an overview. Plants. 2021;10(5):935. DOI 10.3390/plants1005,

7. Tahir H.A.S., Sheikh S.M.M., Ayaz M., Gao X. Suppression of Sclerotinia sclerotiorum by the induction of systemic resistance and regulation of antioxidant pathways in tomato using fengycin produced by Bacillus amyloliquefaciens FZB42. Biomolecules. 2019;9(10): 613. DOI 10.3390/biom9100613

8. Fu M., Xu M., Zhou T., Wang D., Tian S., Han L., Dong H., Zhang C. Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid. J. Exp. Bot. 2014;65(6):1439-1453. DOI 10.1093/jxb/ert488

9. Jiang M., Pang X., Liu H., Lin F., Lu F., Bie X., Lu Z., Lu Y. Iturin A induces resistance and improves the quality and safety of harvested cherry tomato. Molecules. 2021;26(22):6905. DOI 10.3390/molecules26226905

10. Koch K.G., Chapman K., Louis J., Heng-Moss T., Sarath G. Plant tolerance: a unique approach to control hemipteran pests. Front. Plant Sci. 2016;7:1363. DOI 10.3389/fpls.2016.01363

11. Ling S., Zhao Y., Sun S., Zheng D., Sun X., Zeng R., Chen D., Song Y. Enhanced anti-herbivore defense of tomato plants against Spodoptera litura by their rhizosphere bacteria. BMC Plant Biol. 2022; 22(1):254. DOI 10.1186/s12870-022-03644-3

12. Lu K., Zhang L., Qin L., Chen X., Wang X., Zhang M., Dong H. Importin β1 mediates nuclear entry of EIN2C to confer the phloem-based defense against aphids. Int. J. Mol. Sci. 2023;24(10):8545. DOI 10.3390/ijms24108545

13. Maksimov I.V., Sorokan’ A.V., Cherepanova E.A., Yarullina L.G. Effects of salicylic and jasmonic acids on the components of pro/antioxidant system in potato plants infected with late blight. Russ. J. Plant Physiol. 2011;58(2):299-306. DOI 10.1134/S1021443711010109

14. Maksimov I.V., Blagova D.K., Veselova S.V., Sorokan A.V., Burkhanova G.F., Cherepanova E.A., Sarvarova E.R., Rumyantsev S.D., Alekseev V.Yu., Khayrullin R.M. Recombinant Bacillus subtilis 26DCryChS line with gene Btcry1Ia encoding Cry1Ia toxin from Bacillus thuringiensis promotes integrated wheat defense against pathogen Stagonospora nodorum Berk. and greenbug Schizaphis graminum Rond. Biol. Control. 2020;144:104242. DOI 10.1016/j.biocontrol.2020.104242

15. Miljaković D., Marinković J., Balešević-Tubić S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms. 2020;8(7):1037. DOI 10.3390/microorganisms8071037

16. Morkunas I., Mai V.C., Gabrys B. Phytohormonal signaling in plant responses to aphid feeding. Acta Physiol. Plant. 2011;33(6):20572073. DOI 10.1007/s11738-011-0751-7

17. Oukala N., Aissat K., Pastor V. Bacterial endophytes: the hidden actor in plant immune responses against biotic stress. Plants. 2021; 10(5):1012. DOI 10.3390/plants10051012

18. Pangesti N., Reichelt M., van de Mortel J.E., Kapsomenou E., Gershenzon J., van Loon J.J., Dicke M., Pineda A. Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. J. Chem. Ecol. 2016;42(12):1212-1225. DOI 10.1007/s10886-016-0787-7

19. Pieterse C.M., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C., Bakker P.A. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014;52:347-375. DOI 10.1146/annurev-phyto-082712-102340

20. Radchenko E.E., Abdullaev R.A., Anisimova I.N. Genetic resources of cereal crops for aphid resistance. Plants. 2022;11(11):1490. DOI 10.3390/plants11111490

21. Rani S., Kumar P., Dahiya P., Maheshwari R., Dang A.S., Suneja P. Endophytism: a multidimensional approach to plant–prokaryotic microbe interaction. Front. Microbiol. 2022;13:861235. DOI 10.3389/fmicb.2022.861235

22. Rashid M.H., Chung Y.R. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front. Plant Sci. 2017;8:1816. DOI 10.3389/fpls.2017.01816

23. Rashid M.H., Kim H.-J., Yeom S.-I., Yu H.-A., Manir M.M., Moon S.- S., Kang Y.J., Chung Y.R. Bacillus velezensis YC7010 enhances plant defenses against brown planthopper through transcriptomic and metabolic changes in rice. Front. Plant Sci. 2018;9:1904. DOI 10.3389/fpls.2018.01904

24. Rodríguez M., Marín A., Torres M., Béjar V., Campos M., Sampedro I. Aphicidal activity of surfactants produced by Bacillus atrophaeus L193. Front. Microbiol. 2018;9:3114-3123. DOI 10.3389/fmicb.2018.03114

25. Rumyantsev S.D., Alekseev V.Y., Sorokan A.V., Burkhanova G.F., Cherepanova E.A., Garafutdinov R.R., Maksimov I.V., Veselova S.V. Additive effect of the composition of endophytic bacteria Bacillus subtilis on systemic resistance of wheat against greenbug aphid Schizaphis graminum due to lipopeptides. Life. 2023;13(1): 214. DOI 10.3390/life13010214

26. Sorokan A., Cherepanova E., Burkhanova G., Veselova S., Rumyantsev S., Alekseev V., Mardanshin I., Sarvarova E., Khairullin R., Benkovskaya G., Maksimov I. Endophytic Bacillus spp. as a prospective biological tool for control of viral diseases and non-vector Leptinotarsa decemlineata Say. in Solanum tuberosum L. Front. Microbiol. 2020;11:569457. DOI 10.3389/fmicb.2020.569457

27. Tunsagool P., Leelasuphakul W., Jaresitthikunchai J., Phaonakrop N., Roytrakul S., Jutidamrongphan W. Targeted transcriptional and proteomic studies explicate specific roles of Bacillus subtilis iturin A, fengycin, and surfactin on elicitation of defensive systems in mandarin fruit during stress. PLoS One. 2019;14(5):e0217202. DOI 10.1371/journal.pone.0217202

28. Veselova S.V., Nuzhnaya T.V., Maksimov I.V. The effect of 1-methylcyclopropene on the components of pro- and antioxidant systems of wheat and the development of defense reactions in fungal pathogenesis. Appl. Biochem. Microbiol. 2014;50(5):516-523. DOI 10.1134/S0003683814050111

29. Veselova S.V., Burkhanova G.F., Rumyantsev S.D., Blagova D.K., Maksimov I.V. Strains of Bacillus spp. regulate wheat resistance to greenbug aphid Schizaphis graminum Rond. Appl. Biochem. Microbiol. 2019;55(1):41-47. DOI 10.1134/S0003683819010186

30. Veselova S.V., Sorokan A.V., Burkhanova G.F., Rumyantsev S.D., Cherepanova E.A., Alekseev V.Y., Sarvarova E.R., Kasimova A.R., Maksimov I.V. By modulating the hormonal balance and ribonuclease activity of tomato plants Bacillus subtilis induces defense response against potato virus X and potato virus Y. Biomolecules. 2022;12(2):288. DOI 10.3390/biom12020288

31. Waewthongrak W., Leelasuphakul W., McCollum G. Cyclic lipopeptides from Bacillus subtilis ABS–S14 elicit defense-related gene expression in citrus fruit. PLoS One. 2014;9(10):e109386. DOI 10.1371/journal.pone.0109386

32. Xia Y., Liu J., Chen C., Mo X., Tan Q., He Y., Wang Z., Yin J., Zhou G. The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms. 2022; 10(5):1072. DOI 10.3390/microorganisms10051072

33. Zhu-Salzman K., Salzman R.A., Ahn J.-E., Koiwa H. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol. 2004;134(1):420-431. DOI 10.1104/pp.103.028324


Review

Views: 490


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)