Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Байкальские амфиподы и их геномы, большие и малые

https://doi.org/10.18699/vjgb-24-36

Аннотация

Эндемичные амфиподы (Crustacea: Amphipoda) озера Байкал – это один из наиболее ярких примеров возникновения большого количества видов (так называемых букетов видов), занимающих разнообразные экологические ниши, от небольшого числа исходных видов, которое происходило на ограниченной территории и потому доступно для всестороннего исследования. Подобные примеры предоставляют уникальные возможности изучения поведенческих, анатомических и физиологических адаптаций во множестве комбинаций условий среды и потому привлекают большое внимание. Существующие варианты таксономической классификации этой группы насчитывают более 350 морфологических видов и подвидов, которые, согласно молекулярно-­филогенетическим исследованиям маркерных генов, полных транскриптомов и митохондриальных геномов, произошли в результате не менее двух вселений в озеро. Исследования изоферментов и маркерных генов выявили существенное криптическое разнообразие байкальских амфипод, а также существенный разброс по уровню генетического разнообразия внутри некоторых морфологических видов. Экспериментальная проверка, проведенная на данный момент только для двух морфологических видов, показывает возможную применимость митохондриального маркера, гена первой субъединицы цитохром c­оксидазы, для предсказания репродуктивной изоляции. Приблизительно у десятой части видов байкальских амфипод был изучен размер ядерного генома и хромосомные числа, что позволило выявить почти десятикратную вариабельность размера генома при стабильных (2n = 52 для большинства изученных видов) кариотипах. При этом анализ разнообразия повторов в ядерных геномах показал существенные межвидовые различия. Кроме того, выявлены необычные особенности некоторых митохондриальных геномов, такие как вариабельность по длине и по порядку генов, а также дупликации генов тРНК, часть из которых подверглась ремолдингу (изменению специфичности антикодона за счет точечных мутаций). Следующими важными шагами должны стать сборка полных геномов для разных видов байкальских амфипод, чему на данном этапе препятствует сложная структура этих геномов с большим содержанием повторов, и обновление таксономической классификации видов с учетом комплекса полученных данных.

Об авторах

П. Б. Дроздова
Иркутский государственный университет; АНО «Байкальский исследовательский центр»
Россия

Иркутск



Е. В. Мадьярова
Иркутский государственный университет
Россия

Иркутск



А. Н. Гурков
Иркутский государственный университет; АНО «Байкальский исследовательский центр»
Россия

Иркутск



А. Е. Саранчина
Иркутский государственный университет
Россия

Иркутск



Е. В. Романова
Лимнологический институт Сибирского отделения Российской академии наук
Россия

Иркутск



Ж. В. Петунина
Лимнологический институт Сибирского отделения Российской академии наук
Россия

Иркутск



Т. Е. Перетолчина
Лимнологический институт Сибирского отделения Российской академии наук
Россия

Иркутск



Д. Ю. Щербаков
Иркутский государственный университет; Лимнологический институт Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Иркутск

Новосибирск



М. А. Тимофеев
Иркутский государственный университет
Россия

Иркутск



Список литературы

1. Arzhannikov S.G., Ivanov A.V., Arzhannikova A.V., Demonterova E.I., Jansen J.D., Preusser F., Kamenetsky V.S., Kamenetsky M.B. Catastrophic events in the Quaternary outflow history of Lake Baikal. Earth­Sci. Rev. 2018;177:76­113. DOI 10.1016/j.earscirev.2017.11.011

2. Barabanova L., Galkina S., Mikhailova E. Cytogenetic study on the invasive species Gmelinoides fasciatus in the ecosystem of the Gulf of Finland. J. Mar. Biol. Assoc. UK. 2019;99(3):611­618. DOI 10.1017/S0025315417001357

3. Bazikalova A.Y. Amphipods of Lake Baikal. Trudy Baykal’skoy Limnologicheskoy Stantsii = Proceedings of the Baikal Limnological Station. 1945;11:1­440 (in Russian)

4. Bazikalova A.Y. Taxonomy, ecology, and distribution of the genera Micruropus Stebbing and Pseudomicruropus nov. gen. (Amphipoda, Gammaridea). Systematics and ecology of crustaceans of Baikal. Trudy Limnologicheskogo Instituta = Proceedings of the Limnological Institute. 1962;2(22):3­140 (in Russian)

5. Bedulina D.S., Takhteev V.V., Pogrebnyak S.G., Govorukhina E.B., Ma dyarova E.V., Lubyaga Y.A., Vereshchagina K.P., Timofeyev M.A., Luckenbach T. On Eulimnogammarus messerschmidtii, sp. n. (Amphipoda: Gammaridea) from Lake Baikal, Siberia, with redescription of E. cyanoides (Sowinsky) and remarks on taxonomy of the genus Eulimnogammarus. Zootaxa. 2014;3838(5):518­544. DOI 10.11646/zootaxa.3838.5.2

6. Bedulina D., Drozdova P., Gurkov A., von Bergen M., Stadler P.F., Luckenbach T., Timofeyev M., Kalkhof S. Proteomics reveals sexspecific heat shock response of Baikal amphipod Eulimnogammarus cyaneus. Sci. Total Environ. 2021;763:143008. DOI 10.1016/j.scitotenv.2020.143008

7. Blaxter M.L. The promise of a DNA taxonomy. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2004;359(1444):669­679. DOI 10.1098/rstb.2003.1447

8. Bourgeois Y.X.C., Warren B.H. An overview of current population genomics methods for the analysis of whole­genome resequencing data in eukaryotes. Mol. Ecol. 2021;30(23):6036­6071. DOI 10.1111/mec.15989

9. Bukin Yu.S., Petunina J.V., Sherbakov D.Yu. The mechanisms for genetic diversity of Baikal endemic amphipod Gmelinoides fasciatus: relationships between the population processes and paleoclimatic history of the Lake. Russ. J. Genet. 2018;54(9):1059­1068. DOI 10.1134/S1022795418090053

10. Coleman Ch.O. Karyological studies in Amphipoda (Crustacea). Ophe lia. 1994;39(2):93­105. DOI 10.1080/00785326.1994.1042 9537

11. Cormier A., Chebbi M.A., Giraud I., Wattier R., Teixeira M., Gilbert C., Rigaud T., Cordaux R. Comparative genomics of strictly vertically transmitted, feminizing Microsporidia endosymbionts of amphipod crustaceans. Genome Biol. Evol. 2021;13(1):evaa245. DOI 10.1093/gbe/evaa245

12. Cristescu M.E., Adamowicz S.J., Vaillant J.J., Haffner D.G. Ancient lakes revisited: from the ecology to the genetics of speciation. Mol. Ecol. 2010;19(22):4837­4851. DOI 10.1111/j.1365­294X.2010.04832.x

13. Daneliya M.E., Kamaltynov R.M., Kontula T., Väinölä R. Systematics of the Baikalian Babr (Crustacea: Amphipoda: Pallaseidae). Zootaxa. 2009;2276(1):49­68. DOI 10.11646/zootaxa.2276.1.3

14. Daneliya M.E., Kamaltynov R.M., Väinölä R. Phylogeography and systematics of Acanthogammarus s. str., giant amphipod crustaceans from Lake Baikal. Zool. Scr. 2011;40(6):623­637. DOI 10.1111/j.1463­6409.2011.00490.x

15. Drozdova P., Kizenko A., Saranchina A., Gurkov A., Firulyova M., Govorukhina E., Timofeyev M. The diversity of opsins in Lake Baikal amphipods (Amphipoda: Gammaridae). BMC Ecol. Evol. 2021; 21(1):81. DOI 10.1186/s12862­021­01806­9

16. Drozdova P., Saranchina A., Madyarova E., Gurkov A., Timofeyev M. Experimental crossing confirms reproductive isolation between cryptic species within Eulimnogammarus verrucosus (Crustacea: Amphipoda) from Lake Baikal. Int. J. Mol. Sci. 2022;23(18):10858. DOI 10.3390/ijms231810858

17. Drozdova P.B., Saranchina A.E., Mutin A.D., Rzhechitskiy Ya.A., Gurkov A.N., Lipaeva P.V., Shatilina Zh.M., Timofeyev M.A. Geographic barriers and reproductive isolation in the formation of crypic species within the abundant representatives of Baikal endemic amphipods of the genus Eulimnogammarus. In: Proceedings of the IV All­Russia Conference “Development of Life on Earth in Abiotic Change Processes”, 25–29 Sept. 2023, Listvyanka. Irkutsk, 2023; 70­73. DOI 10.24412/cl­34446­2023­4­70­73 (in Russian)

18. Eberle J., Ahrens D., Mayer C., Niehuis O., Misof B. A plea for standardized nuclear markers in Metazoan DNA taxonomy. Trends Ecol. Evol. 2020;35(4):336­345. DOI 10.1016/j.tree.2019.12.003

19. Eme D., Westfall K.M., Matthíasardóttir B., Kristjánsson B.K., Pálsson S. Contrasting phylogeographic patterns of mitochondrial and genome­wide variation in the groundwater amphipod Crangonyx islandicus that survived the Ice Age in Iceland. Diversity. 2023; 15(1):88. DOI 10.3390/d15010088

20. Fazalova V., Nevado B., Peretolchina T., Petunina J., Sherbakov D. When environmental changes do not cause geographic separation of fauna: differential responses of Baikalian invertebrates. BMC Evol. Biol. 2010;10(1):320. DOI 10.1186/1471­2148­10­320

21. Fišer C., Robinson C.T., Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 2018;27(3):613­635. DOI 10.1111/mec.14486

22. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3(5):294­299.

23. Gomanenko G.V., Kamaltynov R.M., Kuzmenkova Zh.V., Berenos K., Sherbakov D.Yu. Population structure of the Baikalian amphipod Gmelinoides fasciatus (Stebbing). Russ. J. Genet. 2005;41(8):907­912. DOI 10.1007/s11177­005­0179­5

24. Gregory T.R., Nicol J.A., Tamm H., Kullman B., Kullman K., Leitch I.J., Murray B.G., Kapraun D.F., Greilhuber J., Bennett M.D. Eukaryotic genome size databases. Nucleic Acids Res. 2007;35(Suppl.1):D332D338. DOI 10.1093/nar/gkl828

25. Gurkov A., Rivarola­Duarte L., Bedulina D., Fernández Casas I., Michael H., Drozdova P., Nazarova A., Govorukhina E., Timofeyev M., Stadler P.F., Luckenbach T. Indication of ongoing amphipod speciation in Lake Baikal by genetic structures within endemic species. BMC Evol. Biol. 2019;19(1):138. DOI 10.1186/s12862­019­1470­8

26. Hebert P.D.N., Cywinska A., Ball S.L., deWaard J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 2003;270(1512):313­321. DOI 10.1098/rspb.2002.2218

27. Horton T., De Broyer C., Bellan-Santini D., Coleman C.O., CopilașCiocianu D., Corbari L., Daneliya M.E., Dauvin J.­C., Decock W., Fanini L., Fišer C., Gasca R., Grabowski M., Guerra­García J.M., Hendrycks E.A., Hughes L.E., Jaume D., Kim Y.­H., King R.A., Lo Brutto S., Lörz A.­N., Mamos T., Serejo C.S., Senna A.R., SouzaFilho J.F., Tandberg A.H.S., Thurston M.H., Vader W., Väinölä R., Valls Domedel G., Vandepitte L., Vanhoorne B., Vonk R., White K.N., Zeidler W. The World Amphipoda Database: history and progress. Rec. Aust. Mus. 2023;75(4):329­342. DOI 10.3853/j.2201­4349.75.2023.1875

28. Hou Z., Sket B., Li S. Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics. 2014;30(4):352­365. DOI 10.1111/cla.12055

29. Hultgren K.M., Jeffery N.W., Moran A., Gregory T.R. Latitudinal variation in genome size in crustaceans. Biol. J. Linn. Soc. 2018;123(2): 348­359. DOI 10.1093/biolinnean/blx153

30. Jeffery N.W., Yampolsky L., Gregory T.R. Nuclear DNA content correlates with depth, body size, and diversification rate in amphipod crustaceans from ancient Lake Baikal, Russia. Genome. 2017;60(4): 303­309. DOI 10.1139/gen­2016­0128

31. Jin S., Bian C., Jiang S., Sun S., Xu L., Xiong Y., Qiao H., Zhang W., You X., Li J., Gong Y., Ma B., Shi Q., Fu H. Identification of candidate genes for the plateau adaptation of a Tibetan amphipod, Gammarus lacustris, through integration of genome and transcriptome sequencing. Front. Genet. 2019;10:53. DOI 10.3389/fgene.2019.00053

32. Jordan S., Hand B.K., Hotaling S., Delvecchia A.G., Malison R., Nissley C., Luikart G., Stanford J.A. Genomic data reveal similar genetic differentiation in aquifer species with different dispersal capabilities and life histories. Biol. J. Linn. Soc. 2020;129(2):315­322. DOI 10.1093/biolinnean/blz173

33. Jourdan J., Bundschuh M., Copilaș-Ciocianu D., Fišer C., Grabowski M., Hupało K., Jemec Kokalj A., Kabus J., Römbke J., Soose L.J., Oehlmann J. Cryptic species in ecotoxicology. Environ. Toxicol. Chem. 2023;42(9):1889­1914. DOI 10.1002/etc.5696

34. Kamaltynov R.M. Amphipods (Amphipoda: Gammaroidea). In: Index of Animal Species Inhabiting Lake Baikal and its Catchment Area. Novosibirsk, 2001;I(1):572­831 (in Russian)

35. Kamaltynov R.M. Higher crustaceans (Amphipoda: Gammaroidea) of Angara and Yenisey. In: Index of Animal Species Inhabiting Lake Baikal and its Catchment Area. Novosibirsk, 2009;II(1):297­329 (in Russian)]

36. Kao D., Lai A.G., Stamataki E., Rosic S., Konstantinides N., Jarvis E., Di Donfrancesco A., Pouchkina­Stancheva N., Sémon M., Grillo M., Bruce H., Kumar S., Siwanowicz I., Le A., Lemire A., Eisen M.B., Extavour C., Browne W.E., Wolff C., Averof M., Patel N.H., Sarkies P., Pavlopoulos A., Aboobaker A. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLife. 2016;5:e20062. DOI 10.7554/eLife.20062

37. Kovalenkova M.V. Analysis of the Evolution of Speciesrich Groups of Baikal Invertebrates Based on Intron Sequences of ATP Synthase α- and β-subunit Genes. PhD Thesis. Irkutsk, 2018 (in Russian)

38. Lavrov D.V., Pett W. Animal mitochondrial DNA as we do not know it: mt­genome organization and evolution in nonbilaterian lineages. Genome Biol. Evol. 2016;8(9):2896­2913. DOI 10.1093/gbe/evw195

39. Lefébure T., Douady C.J., Gouy M., Gibert J. Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Mol. Phylogenet. Evol. 2006;40(2):435­447. DOI 10.1016/j.ympev.2006.03.014

40. Macdonald K.S. III, Yampolsky L., Duffy J.E. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol. Phylogenet. Evol. 2005;35(2):323­343. DOI 10.1016/j.ympev.2005.01.013

41. Mamos T., Grabowski M., Rewicz T., Bojko J., Strapagiel D., Bur zyński A. Mitochondrial genomes, phylogenetic associations, and SNP recovery for the key invasive Ponto­Caspian amphipods in Europe. Int. J. Mol. Sci. 2021;22(19):10300. DOI 10.3390/ijms221910300

42. Mashiko K., Kamaltynov R., Morino H., Sherbakov D.Y. Genetic differentiation among gammarid (Eulimnogammarus cyaneus) populations in Lake Baikal, East Siberia. Arch. Hydrobiol. 2000;148(2): 249­261. DOI 10.1127/archiv­hydrobiol/148/2000/249

43. Mats V.D., Shcherbakov D.Y., Efimova I.M. Late Cretaceous–Cenozoic history of the Lake Baikal depression and formation of its unique biodiversity. Stratigr. Geol. Correl. 2011;19(4):404­423. DOI 10.1134/S0869593811040058

44. Moskalenko V.N., Neretina T.V., Yampolsky L.Y. To the origin of Lake Baikal endemic gammarid radiations, with description of two new Eulimnogammarus spp. Zootaxa. 2020;4766(3):457­471. DOI 10.11646/zootaxa.4766.3.5

45. Natyaganova A.V., Sitnikova T.Y. Karyotype of the Baikal amphipod Polyacanthisca calceolata Bazikalova, 1937, (Crustacea, Amphipoda). Chromosome Sci. 2012;15(1­2):43­48. DOI 10.11352/scr.15.43

46. Naumenko S.A., Logacheva M.D., Popova N.V., Klepikova A.V., Penin A.A., Bazykin G.A., Etingova A.E., Mugue N.S., Kondrashov A.S., Yampolsky L.Y. Transcriptome­based phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection. Mol. Ecol. 2017; 26(2):536­553. DOI 10.1111/mec.13927

47. Patra A.K., Chung O., Yoo J.Y., Kim M.S., Yoon M.G., Choi J.­H., Yang Y. First draft genome for the sand­hopper Trinorchestia longiramus. Sci. Data. 2020;7(1):85. DOI 10.1038/s41597­020­0424­8

48. Patra A.K., Chung O., Yoo J.Y., Baek S.H., Jung T.W., Kim M.S., Yoon M.G., Yang Y., Choi J.­H. The draft genome sequence of a new land­hopper Platorchestia hallaensis. Front. Genet. 2021;11: 621301. DOI 10.3389/fgene.2020.621301

49. Petunina Z.V. Comparative Ecological and Genetic Analysis of Microsporidia and Their Host, the Baikal Amphipod Gmelinoides fasciatus. PhD Thesis. Irkutsk, 2015 (in Russian)

50. Petunina J.V., Vavrishchuk N.V., Romanova E.V. Variability of morphological and genetic traits of Macrohectopus branickii. In: Development of Physical and Chemical Biology, Bioengineering and Bioinformatics at the Present Stage: Abstracts of reports of the IV All­Russian sci. and pract. conf. with int. participation, dedicated to the 45th anniversary of the Department of Physical and Chemical Biology, Bioengineering and Bioinformatics of ISU. Irkutsk, October 25–27, 2023. Irkutsk: Irkutsk State University Publ., 2023;111113 (in Russian)

51. Poynton H.C., Hasenbein S., Benoit J.B., Sepulveda M.S., Poelchau M.F., Hughes D.S.T., Murali S.C., Chen S., Glastad K.M., Goodisman M.A.D., … Dinh H., Han Y., Doddapaneni H., Worley K.C., Muzny D.M., Gibbs R.A., Richards S. The toxicogenome of Hyalella azteca: a model for sediment ecotoxicology and evolutionary toxicology. Environ. Sci. Technol. 2018;52(10):6009­6022. DOI 10.1021/acs.est.8b00837

52. Ratnasingham S., Hebert P.D.N. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes. 2007;7(3): 355­364. DOI 10.1111/j.1471­8286.2007.01678.x

53. Ratnasingham S., Hebert P.D.N. A DNA­based registry for all animal species: The Barcode Index Number (BIN) System. PLoS One. 2013;8(7):e66213. DOI 10.1371/journal.pone.0066213

54. Rivarola­Duarte L. Unraveling the genetic secrets of ancient Baikal amphipods. PhD Thesis. Leipzig: Universität Leipzig, 2021

55. Rivarola­Duarte L., Otto C., Jühling F., Schreiber S., Bedulina D., Jakob L., Gurkov A., Axenov­Gribanov D., Sahyoun A.H., Lucassen M., Hackermüller J., Hoffmann S., Sartoris F., Pörtner H.-O., Timofeyev M., Luckenbach T., Stadler P.F. A first glimpse at the genome of the Baikalian amphipod Eulimnogammarus verrucosus. J. Exp. Zoolog. B Mol. Dev. Evol. 2014;322(3):177­189. DOI 10.1002/jez.b.22560

56. Romanova E.V., Aleoshin V.V., Kamaltynov R.M., Mikhailov K.V., Logacheva M.D., Sirotinina E.A., Gornov A.Yu., Anikin A.S., Sherbakov D.Yu. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics. 2016a;17(14):1016. DOI 10.1186/s12864­016­3357­z

57. Romanova E.V., Mikhailov K.V., Logacheva M.D., Kamaltynov R.M., Aleoshin V.V., Sherbakov D.Y. The complete mitochondrial genome of Baikalian amphipoda Eulimnogammarus vittatus (Dybowsky, 1874). Mitochondrial DNA Part A. 2016b;27(3):1795­1797. DOI 10.3109/19401736.2014.963817

58. Romanova E.V., Mikhailov K.V., Logacheva M.D., Kamaltynov R.M., Aleoshin V.V., Sherbakov D.Yu. The complete mitochondrial genome of a deep­water Baikalian amphipoda Brachyuropus grewingkii (Dybowsky, 1874). Mitochondrial DNA Part A. 2016c;27(6): 4158­4159. DOI 10.3109/19401736.2014.1003891

59. Romanova E.V., Bukin Y.S., Mikhailov K.V., Logacheva M.D., Aleoshin V.V., Sherbakov D.Yu. Hidden cases of tRNA gene duplication and remolding in mitochondrial genomes of amphipods. Mol. Phylogenet. Evol. 2020;144:106710. DOI 10.1016/j.ympev.2019.106710

60. Romanova E.V., Bukin Y.S., Mikhailov K.V., Logacheva M.D., Aleoshin V.V., Sherbakov D.Y. The mitochondrial genome of a freshwater pelagic amphipod Macrohectopus branickii is among the longest in Metazoa. Genes. 2021;12(12):2030. DOI 10.3390/genes12122030

61. Salemaa H., Kamaltynov R.M. The chromosome numbers of endemic Amphipoda and Isopoda – an evolutionary paradox in the ancient lakes Ohrid and Baikal. In: Martens K., Goddeeris B., Coulter G. (Eds.) Speciation in Ancient Lakes. Advances in Limnology. Vol. 44. Stuttgart (Germany): Schweizerbart Science Publ.,1994;247­256

62. Shao C., Sun S., Liu K., Wang J., Li S., Liu Q., Deagle B.E., Seim I., Biscontin A., Wang Q., … Zhang G., Yang H., Xu X., Wang J., Zhao X., Meyer B., Fan G. The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights. Cell. 2023;186(6):1279­1294.e19. DOI 10.1016/j.cell.2023.02.005

63. Sherbakov D.Y. Molecular phylogenetic studies on the origin of biodiversity in Lake Baikal. Trends Ecol. Evol. 1999;14(3):92­95. DOI 10.1016/S0169­5347(98)01543­2

64. Sherbakov D.Yu., Kovalenkova M.V., Maikova O.O. Some results of molecular phylogenetic studies of Baikal endemic invertebrates. Russ. J. Genet. Appl. Res. 2017;7(4):345­349. DOI 10.1134/S2079059717040104

65. Sket B., Morino H., Takhteev V., Rogers D.C. Chapter 16.6 – Phylum Arthropoda: Malacostraca. In: Thorp and Covich’s Freshwater Invertebrates. Vol. 4: Keys to Palaearctic Fauna. Boston: Acad. Press, 2019;789­889. DOI 10.1016/B978­0­12­385024­9.00022­8

66. Smith D.R. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Brief. Funct. Genomics. 2016;15(1):47­54. DOI 10.1093/bfgp/elv027

67. Takhteev V.V. Essays on the Amphipods of Lake Baikal (Systemat ics, comparative ecology, evolution). Irkutsk, 2000a (in Russian)

68. Takhteev V.V. Trends in the evolution of Baikal amphipods and evolutionary parallels with some marine malacostracan faunas. In: Advances in Ecological Research. Vol. 31: Ancient Lakes: Biodiversity, Ecology and Evolution. Acad. Press, 2000b;197­220. DOI 10.1016/S0065­2504(00)31013­3

69. Takhteev V. On the current state of taxonomy of the Baikal Lake amphipods (Crustacea, Amphipoda) and the typological ways of constructing their system. Arthropoda Sel. 2019;28(1):374­402. DOI 10.15298/arthsel.28.3.03

70. Takhteev V.V., Berezina N.A., Sidorov D.A. Checklist of the Amphipoda (Crustacea) from continental waters of Russia, with data on alien species. Arthropoda Sel. 2015;24(3):335­370. DOI 10.15298/arthsel.24.3.09

71. Toews D.P.L., Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 2012;21(16):3907­3930. DOI 10.1111/j.1365­294X.2012.05664.x

72. Väinölä R., Kamaltynov R.M. Species diversity and speciation in the endemic amphipods of Lake Baikal: molecular evidence. Crustaceana. 1999;72(8):945­956

73. Weston J.N.J., Jensen E.L., Hasoon M.S.R., Kitson J.J.N., Stewart H.A., Jamieson A.J. Barriers to gene flow in the deepest ocean ecosystems: evidence from global population genomics of a cosmopolitan amphipod. Sci. Adv. 2022;8(43):eabo6672. DOI 10.1126/sciadv.abo6672

74. Wyngaard G.A., Skern­Mauritzen R., Malde K., Prendergast R., Peruzzi S. The salmon louse genome may be much larger than sequencing suggests. Sci. Rep. 2022;12(1):6616. DOI 10.1038/s41598­02210585­2

75. Yampolsky L.Yu., Kamaltynov R.M., Ebert D., Filatov D.A., Chernykh V.I. Variation of allozyme loci in endemic gammarids of Lake Baikal. Biol. J. Linn. Soc. 1994;53(4):309­323. DOI 10.1111/j.10958312.1994.tb01015.x

76. Yuxiang W., Peretolchina T.E., Romanova E.V., Sherbakov D.Y. Comparison of the evolutionary patterns of DNA repeats in ancient and young invertebrate species flocks of Lake Baikal. Vavilov J. Genet. Breed. 2023;27(4):349­356. DOI 10.18699/VJGB­23­42

77. Zaidykov I.Y., Naumova E.Y., Sukhanova L.V. MtDNA polymorphism of Macrohectopus branickii Dybowsky, 1974 (Amphipoda) – an endemic pelagic key species of Lake Baikal. In: Chaplina T. (Ed.) Complex Investigation of the World Ocean (CIWO­2023). Springer Nature Switzerland, 2023;223­229. DOI 10.1007/978­3­031­47851­2_26

78. Zolotovskaya E., Nazarova A., Saranchina A., Mutin A., Drozdova P., Lubyaga Y., Timofeyev M. Hemocyte proteome of the Lake Baikal endemic Eulimnogammarus verrucosus (Crustacea: Amphipoda) sheds light on immune­related proteins. Biol. Commun. 2021;66(4): 290­301. DOI 10.21638/spbu03.2021.402


Рецензия

Просмотров: 656


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)