Байкальские амфиподы и их геномы, большие и малые
https://doi.org/10.18699/vjgb-24-36
Аннотация
Эндемичные амфиподы (Crustacea: Amphipoda) озера Байкал – это один из наиболее ярких примеров возникновения большого количества видов (так называемых букетов видов), занимающих разнообразные экологические ниши, от небольшого числа исходных видов, которое происходило на ограниченной территории и потому доступно для всестороннего исследования. Подобные примеры предоставляют уникальные возможности изучения поведенческих, анатомических и физиологических адаптаций во множестве комбинаций условий среды и потому привлекают большое внимание. Существующие варианты таксономической классификации этой группы насчитывают более 350 морфологических видов и подвидов, которые, согласно молекулярно-филогенетическим исследованиям маркерных генов, полных транскриптомов и митохондриальных геномов, произошли в результате не менее двух вселений в озеро. Исследования изоферментов и маркерных генов выявили существенное криптическое разнообразие байкальских амфипод, а также существенный разброс по уровню генетического разнообразия внутри некоторых морфологических видов. Экспериментальная проверка, проведенная на данный момент только для двух морфологических видов, показывает возможную применимость митохондриального маркера, гена первой субъединицы цитохром cоксидазы, для предсказания репродуктивной изоляции. Приблизительно у десятой части видов байкальских амфипод был изучен размер ядерного генома и хромосомные числа, что позволило выявить почти десятикратную вариабельность размера генома при стабильных (2n = 52 для большинства изученных видов) кариотипах. При этом анализ разнообразия повторов в ядерных геномах показал существенные межвидовые различия. Кроме того, выявлены необычные особенности некоторых митохондриальных геномов, такие как вариабельность по длине и по порядку генов, а также дупликации генов тРНК, часть из которых подверглась ремолдингу (изменению специфичности антикодона за счет точечных мутаций). Следующими важными шагами должны стать сборка полных геномов для разных видов байкальских амфипод, чему на данном этапе препятствует сложная структура этих геномов с большим содержанием повторов, и обновление таксономической классификации видов с учетом комплекса полученных данных.
Об авторах
П. Б. ДроздоваРоссия
Иркутск
Е. В. Мадьярова
Россия
Иркутск
А. Н. Гурков
Россия
Иркутск
А. Е. Саранчина
Россия
Иркутск
Е. В. Романова
Россия
Иркутск
Ж. В. Петунина
Россия
Иркутск
Т. Е. Перетолчина
Россия
Иркутск
Д. Ю. Щербаков
Россия
Иркутск
Новосибирск
М. А. Тимофеев
Россия
Иркутск
Список литературы
1. Arzhannikov S.G., Ivanov A.V., Arzhannikova A.V., Demonterova E.I., Jansen J.D., Preusser F., Kamenetsky V.S., Kamenetsky M.B. Catastrophic events in the Quaternary outflow history of Lake Baikal. EarthSci. Rev. 2018;177:76113. DOI 10.1016/j.earscirev.2017.11.011
2. Barabanova L., Galkina S., Mikhailova E. Cytogenetic study on the invasive species Gmelinoides fasciatus in the ecosystem of the Gulf of Finland. J. Mar. Biol. Assoc. UK. 2019;99(3):611618. DOI 10.1017/S0025315417001357
3. Bazikalova A.Y. Amphipods of Lake Baikal. Trudy Baykal’skoy Limnologicheskoy Stantsii = Proceedings of the Baikal Limnological Station. 1945;11:1440 (in Russian)
4. Bazikalova A.Y. Taxonomy, ecology, and distribution of the genera Micruropus Stebbing and Pseudomicruropus nov. gen. (Amphipoda, Gammaridea). Systematics and ecology of crustaceans of Baikal. Trudy Limnologicheskogo Instituta = Proceedings of the Limnological Institute. 1962;2(22):3140 (in Russian)
5. Bedulina D.S., Takhteev V.V., Pogrebnyak S.G., Govorukhina E.B., Ma dyarova E.V., Lubyaga Y.A., Vereshchagina K.P., Timofeyev M.A., Luckenbach T. On Eulimnogammarus messerschmidtii, sp. n. (Amphipoda: Gammaridea) from Lake Baikal, Siberia, with redescription of E. cyanoides (Sowinsky) and remarks on taxonomy of the genus Eulimnogammarus. Zootaxa. 2014;3838(5):518544. DOI 10.11646/zootaxa.3838.5.2
6. Bedulina D., Drozdova P., Gurkov A., von Bergen M., Stadler P.F., Luckenbach T., Timofeyev M., Kalkhof S. Proteomics reveals sexspecific heat shock response of Baikal amphipod Eulimnogammarus cyaneus. Sci. Total Environ. 2021;763:143008. DOI 10.1016/j.scitotenv.2020.143008
7. Blaxter M.L. The promise of a DNA taxonomy. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2004;359(1444):669679. DOI 10.1098/rstb.2003.1447
8. Bourgeois Y.X.C., Warren B.H. An overview of current population genomics methods for the analysis of wholegenome resequencing data in eukaryotes. Mol. Ecol. 2021;30(23):60366071. DOI 10.1111/mec.15989
9. Bukin Yu.S., Petunina J.V., Sherbakov D.Yu. The mechanisms for genetic diversity of Baikal endemic amphipod Gmelinoides fasciatus: relationships between the population processes and paleoclimatic history of the Lake. Russ. J. Genet. 2018;54(9):10591068. DOI 10.1134/S1022795418090053
10. Coleman Ch.O. Karyological studies in Amphipoda (Crustacea). Ophe lia. 1994;39(2):93105. DOI 10.1080/00785326.1994.1042 9537
11. Cormier A., Chebbi M.A., Giraud I., Wattier R., Teixeira M., Gilbert C., Rigaud T., Cordaux R. Comparative genomics of strictly vertically transmitted, feminizing Microsporidia endosymbionts of amphipod crustaceans. Genome Biol. Evol. 2021;13(1):evaa245. DOI 10.1093/gbe/evaa245
12. Cristescu M.E., Adamowicz S.J., Vaillant J.J., Haffner D.G. Ancient lakes revisited: from the ecology to the genetics of speciation. Mol. Ecol. 2010;19(22):48374851. DOI 10.1111/j.1365294X.2010.04832.x
13. Daneliya M.E., Kamaltynov R.M., Kontula T., Väinölä R. Systematics of the Baikalian Babr (Crustacea: Amphipoda: Pallaseidae). Zootaxa. 2009;2276(1):4968. DOI 10.11646/zootaxa.2276.1.3
14. Daneliya M.E., Kamaltynov R.M., Väinölä R. Phylogeography and systematics of Acanthogammarus s. str., giant amphipod crustaceans from Lake Baikal. Zool. Scr. 2011;40(6):623637. DOI 10.1111/j.14636409.2011.00490.x
15. Drozdova P., Kizenko A., Saranchina A., Gurkov A., Firulyova M., Govorukhina E., Timofeyev M. The diversity of opsins in Lake Baikal amphipods (Amphipoda: Gammaridae). BMC Ecol. Evol. 2021; 21(1):81. DOI 10.1186/s12862021018069
16. Drozdova P., Saranchina A., Madyarova E., Gurkov A., Timofeyev M. Experimental crossing confirms reproductive isolation between cryptic species within Eulimnogammarus verrucosus (Crustacea: Amphipoda) from Lake Baikal. Int. J. Mol. Sci. 2022;23(18):10858. DOI 10.3390/ijms231810858
17. Drozdova P.B., Saranchina A.E., Mutin A.D., Rzhechitskiy Ya.A., Gurkov A.N., Lipaeva P.V., Shatilina Zh.M., Timofeyev M.A. Geographic barriers and reproductive isolation in the formation of crypic species within the abundant representatives of Baikal endemic amphipods of the genus Eulimnogammarus. In: Proceedings of the IV AllRussia Conference “Development of Life on Earth in Abiotic Change Processes”, 25–29 Sept. 2023, Listvyanka. Irkutsk, 2023; 7073. DOI 10.24412/cl34446202347073 (in Russian)
18. Eberle J., Ahrens D., Mayer C., Niehuis O., Misof B. A plea for standardized nuclear markers in Metazoan DNA taxonomy. Trends Ecol. Evol. 2020;35(4):336345. DOI 10.1016/j.tree.2019.12.003
19. Eme D., Westfall K.M., Matthíasardóttir B., Kristjánsson B.K., Pálsson S. Contrasting phylogeographic patterns of mitochondrial and genomewide variation in the groundwater amphipod Crangonyx islandicus that survived the Ice Age in Iceland. Diversity. 2023; 15(1):88. DOI 10.3390/d15010088
20. Fazalova V., Nevado B., Peretolchina T., Petunina J., Sherbakov D. When environmental changes do not cause geographic separation of fauna: differential responses of Baikalian invertebrates. BMC Evol. Biol. 2010;10(1):320. DOI 10.1186/1471214810320
21. Fišer C., Robinson C.T., Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 2018;27(3):613635. DOI 10.1111/mec.14486
22. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3(5):294299.
23. Gomanenko G.V., Kamaltynov R.M., Kuzmenkova Zh.V., Berenos K., Sherbakov D.Yu. Population structure of the Baikalian amphipod Gmelinoides fasciatus (Stebbing). Russ. J. Genet. 2005;41(8):907912. DOI 10.1007/s1117700501795
24. Gregory T.R., Nicol J.A., Tamm H., Kullman B., Kullman K., Leitch I.J., Murray B.G., Kapraun D.F., Greilhuber J., Bennett M.D. Eukaryotic genome size databases. Nucleic Acids Res. 2007;35(Suppl.1):D332D338. DOI 10.1093/nar/gkl828
25. Gurkov A., RivarolaDuarte L., Bedulina D., Fernández Casas I., Michael H., Drozdova P., Nazarova A., Govorukhina E., Timofeyev M., Stadler P.F., Luckenbach T. Indication of ongoing amphipod speciation in Lake Baikal by genetic structures within endemic species. BMC Evol. Biol. 2019;19(1):138. DOI 10.1186/s1286201914708
26. Hebert P.D.N., Cywinska A., Ball S.L., deWaard J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 2003;270(1512):313321. DOI 10.1098/rspb.2002.2218
27. Horton T., De Broyer C., Bellan-Santini D., Coleman C.O., CopilașCiocianu D., Corbari L., Daneliya M.E., Dauvin J.C., Decock W., Fanini L., Fišer C., Gasca R., Grabowski M., GuerraGarcía J.M., Hendrycks E.A., Hughes L.E., Jaume D., Kim Y.H., King R.A., Lo Brutto S., Lörz A.N., Mamos T., Serejo C.S., Senna A.R., SouzaFilho J.F., Tandberg A.H.S., Thurston M.H., Vader W., Väinölä R., Valls Domedel G., Vandepitte L., Vanhoorne B., Vonk R., White K.N., Zeidler W. The World Amphipoda Database: history and progress. Rec. Aust. Mus. 2023;75(4):329342. DOI 10.3853/j.22014349.75.2023.1875
28. Hou Z., Sket B., Li S. Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics. 2014;30(4):352365. DOI 10.1111/cla.12055
29. Hultgren K.M., Jeffery N.W., Moran A., Gregory T.R. Latitudinal variation in genome size in crustaceans. Biol. J. Linn. Soc. 2018;123(2): 348359. DOI 10.1093/biolinnean/blx153
30. Jeffery N.W., Yampolsky L., Gregory T.R. Nuclear DNA content correlates with depth, body size, and diversification rate in amphipod crustaceans from ancient Lake Baikal, Russia. Genome. 2017;60(4): 303309. DOI 10.1139/gen20160128
31. Jin S., Bian C., Jiang S., Sun S., Xu L., Xiong Y., Qiao H., Zhang W., You X., Li J., Gong Y., Ma B., Shi Q., Fu H. Identification of candidate genes for the plateau adaptation of a Tibetan amphipod, Gammarus lacustris, through integration of genome and transcriptome sequencing. Front. Genet. 2019;10:53. DOI 10.3389/fgene.2019.00053
32. Jordan S., Hand B.K., Hotaling S., Delvecchia A.G., Malison R., Nissley C., Luikart G., Stanford J.A. Genomic data reveal similar genetic differentiation in aquifer species with different dispersal capabilities and life histories. Biol. J. Linn. Soc. 2020;129(2):315322. DOI 10.1093/biolinnean/blz173
33. Jourdan J., Bundschuh M., Copilaș-Ciocianu D., Fišer C., Grabowski M., Hupało K., Jemec Kokalj A., Kabus J., Römbke J., Soose L.J., Oehlmann J. Cryptic species in ecotoxicology. Environ. Toxicol. Chem. 2023;42(9):18891914. DOI 10.1002/etc.5696
34. Kamaltynov R.M. Amphipods (Amphipoda: Gammaroidea). In: Index of Animal Species Inhabiting Lake Baikal and its Catchment Area. Novosibirsk, 2001;I(1):572831 (in Russian)
35. Kamaltynov R.M. Higher crustaceans (Amphipoda: Gammaroidea) of Angara and Yenisey. In: Index of Animal Species Inhabiting Lake Baikal and its Catchment Area. Novosibirsk, 2009;II(1):297329 (in Russian)]
36. Kao D., Lai A.G., Stamataki E., Rosic S., Konstantinides N., Jarvis E., Di Donfrancesco A., PouchkinaStancheva N., Sémon M., Grillo M., Bruce H., Kumar S., Siwanowicz I., Le A., Lemire A., Eisen M.B., Extavour C., Browne W.E., Wolff C., Averof M., Patel N.H., Sarkies P., Pavlopoulos A., Aboobaker A. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLife. 2016;5:e20062. DOI 10.7554/eLife.20062
37. Kovalenkova M.V. Analysis of the Evolution of Speciesrich Groups of Baikal Invertebrates Based on Intron Sequences of ATP Synthase α- and β-subunit Genes. PhD Thesis. Irkutsk, 2018 (in Russian)
38. Lavrov D.V., Pett W. Animal mitochondrial DNA as we do not know it: mtgenome organization and evolution in nonbilaterian lineages. Genome Biol. Evol. 2016;8(9):28962913. DOI 10.1093/gbe/evw195
39. Lefébure T., Douady C.J., Gouy M., Gibert J. Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Mol. Phylogenet. Evol. 2006;40(2):435447. DOI 10.1016/j.ympev.2006.03.014
40. Macdonald K.S. III, Yampolsky L., Duffy J.E. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol. Phylogenet. Evol. 2005;35(2):323343. DOI 10.1016/j.ympev.2005.01.013
41. Mamos T., Grabowski M., Rewicz T., Bojko J., Strapagiel D., Bur zyński A. Mitochondrial genomes, phylogenetic associations, and SNP recovery for the key invasive PontoCaspian amphipods in Europe. Int. J. Mol. Sci. 2021;22(19):10300. DOI 10.3390/ijms221910300
42. Mashiko K., Kamaltynov R., Morino H., Sherbakov D.Y. Genetic differentiation among gammarid (Eulimnogammarus cyaneus) populations in Lake Baikal, East Siberia. Arch. Hydrobiol. 2000;148(2): 249261. DOI 10.1127/archivhydrobiol/148/2000/249
43. Mats V.D., Shcherbakov D.Y., Efimova I.M. Late Cretaceous–Cenozoic history of the Lake Baikal depression and formation of its unique biodiversity. Stratigr. Geol. Correl. 2011;19(4):404423. DOI 10.1134/S0869593811040058
44. Moskalenko V.N., Neretina T.V., Yampolsky L.Y. To the origin of Lake Baikal endemic gammarid radiations, with description of two new Eulimnogammarus spp. Zootaxa. 2020;4766(3):457471. DOI 10.11646/zootaxa.4766.3.5
45. Natyaganova A.V., Sitnikova T.Y. Karyotype of the Baikal amphipod Polyacanthisca calceolata Bazikalova, 1937, (Crustacea, Amphipoda). Chromosome Sci. 2012;15(12):4348. DOI 10.11352/scr.15.43
46. Naumenko S.A., Logacheva M.D., Popova N.V., Klepikova A.V., Penin A.A., Bazykin G.A., Etingova A.E., Mugue N.S., Kondrashov A.S., Yampolsky L.Y. Transcriptomebased phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection. Mol. Ecol. 2017; 26(2):536553. DOI 10.1111/mec.13927
47. Patra A.K., Chung O., Yoo J.Y., Kim M.S., Yoon M.G., Choi J.H., Yang Y. First draft genome for the sandhopper Trinorchestia longiramus. Sci. Data. 2020;7(1):85. DOI 10.1038/s4159702004248
48. Patra A.K., Chung O., Yoo J.Y., Baek S.H., Jung T.W., Kim M.S., Yoon M.G., Yang Y., Choi J.H. The draft genome sequence of a new landhopper Platorchestia hallaensis. Front. Genet. 2021;11: 621301. DOI 10.3389/fgene.2020.621301
49. Petunina Z.V. Comparative Ecological and Genetic Analysis of Microsporidia and Their Host, the Baikal Amphipod Gmelinoides fasciatus. PhD Thesis. Irkutsk, 2015 (in Russian)
50. Petunina J.V., Vavrishchuk N.V., Romanova E.V. Variability of morphological and genetic traits of Macrohectopus branickii. In: Development of Physical and Chemical Biology, Bioengineering and Bioinformatics at the Present Stage: Abstracts of reports of the IV AllRussian sci. and pract. conf. with int. participation, dedicated to the 45th anniversary of the Department of Physical and Chemical Biology, Bioengineering and Bioinformatics of ISU. Irkutsk, October 25–27, 2023. Irkutsk: Irkutsk State University Publ., 2023;111113 (in Russian)
51. Poynton H.C., Hasenbein S., Benoit J.B., Sepulveda M.S., Poelchau M.F., Hughes D.S.T., Murali S.C., Chen S., Glastad K.M., Goodisman M.A.D., … Dinh H., Han Y., Doddapaneni H., Worley K.C., Muzny D.M., Gibbs R.A., Richards S. The toxicogenome of Hyalella azteca: a model for sediment ecotoxicology and evolutionary toxicology. Environ. Sci. Technol. 2018;52(10):60096022. DOI 10.1021/acs.est.8b00837
52. Ratnasingham S., Hebert P.D.N. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes. 2007;7(3): 355364. DOI 10.1111/j.14718286.2007.01678.x
53. Ratnasingham S., Hebert P.D.N. A DNAbased registry for all animal species: The Barcode Index Number (BIN) System. PLoS One. 2013;8(7):e66213. DOI 10.1371/journal.pone.0066213
54. RivarolaDuarte L. Unraveling the genetic secrets of ancient Baikal amphipods. PhD Thesis. Leipzig: Universität Leipzig, 2021
55. RivarolaDuarte L., Otto C., Jühling F., Schreiber S., Bedulina D., Jakob L., Gurkov A., AxenovGribanov D., Sahyoun A.H., Lucassen M., Hackermüller J., Hoffmann S., Sartoris F., Pörtner H.-O., Timofeyev M., Luckenbach T., Stadler P.F. A first glimpse at the genome of the Baikalian amphipod Eulimnogammarus verrucosus. J. Exp. Zoolog. B Mol. Dev. Evol. 2014;322(3):177189. DOI 10.1002/jez.b.22560
56. Romanova E.V., Aleoshin V.V., Kamaltynov R.M., Mikhailov K.V., Logacheva M.D., Sirotinina E.A., Gornov A.Yu., Anikin A.S., Sherbakov D.Yu. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics. 2016a;17(14):1016. DOI 10.1186/s128640163357z
57. Romanova E.V., Mikhailov K.V., Logacheva M.D., Kamaltynov R.M., Aleoshin V.V., Sherbakov D.Y. The complete mitochondrial genome of Baikalian amphipoda Eulimnogammarus vittatus (Dybowsky, 1874). Mitochondrial DNA Part A. 2016b;27(3):17951797. DOI 10.3109/19401736.2014.963817
58. Romanova E.V., Mikhailov K.V., Logacheva M.D., Kamaltynov R.M., Aleoshin V.V., Sherbakov D.Yu. The complete mitochondrial genome of a deepwater Baikalian amphipoda Brachyuropus grewingkii (Dybowsky, 1874). Mitochondrial DNA Part A. 2016c;27(6): 41584159. DOI 10.3109/19401736.2014.1003891
59. Romanova E.V., Bukin Y.S., Mikhailov K.V., Logacheva M.D., Aleoshin V.V., Sherbakov D.Yu. Hidden cases of tRNA gene duplication and remolding in mitochondrial genomes of amphipods. Mol. Phylogenet. Evol. 2020;144:106710. DOI 10.1016/j.ympev.2019.106710
60. Romanova E.V., Bukin Y.S., Mikhailov K.V., Logacheva M.D., Aleoshin V.V., Sherbakov D.Y. The mitochondrial genome of a freshwater pelagic amphipod Macrohectopus branickii is among the longest in Metazoa. Genes. 2021;12(12):2030. DOI 10.3390/genes12122030
61. Salemaa H., Kamaltynov R.M. The chromosome numbers of endemic Amphipoda and Isopoda – an evolutionary paradox in the ancient lakes Ohrid and Baikal. In: Martens K., Goddeeris B., Coulter G. (Eds.) Speciation in Ancient Lakes. Advances in Limnology. Vol. 44. Stuttgart (Germany): Schweizerbart Science Publ.,1994;247256
62. Shao C., Sun S., Liu K., Wang J., Li S., Liu Q., Deagle B.E., Seim I., Biscontin A., Wang Q., … Zhang G., Yang H., Xu X., Wang J., Zhao X., Meyer B., Fan G. The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights. Cell. 2023;186(6):12791294.e19. DOI 10.1016/j.cell.2023.02.005
63. Sherbakov D.Y. Molecular phylogenetic studies on the origin of biodiversity in Lake Baikal. Trends Ecol. Evol. 1999;14(3):9295. DOI 10.1016/S01695347(98)015432
64. Sherbakov D.Yu., Kovalenkova M.V., Maikova O.O. Some results of molecular phylogenetic studies of Baikal endemic invertebrates. Russ. J. Genet. Appl. Res. 2017;7(4):345349. DOI 10.1134/S2079059717040104
65. Sket B., Morino H., Takhteev V., Rogers D.C. Chapter 16.6 – Phylum Arthropoda: Malacostraca. In: Thorp and Covich’s Freshwater Invertebrates. Vol. 4: Keys to Palaearctic Fauna. Boston: Acad. Press, 2019;789889. DOI 10.1016/B9780123850249.000228
66. Smith D.R. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Brief. Funct. Genomics. 2016;15(1):4754. DOI 10.1093/bfgp/elv027
67. Takhteev V.V. Essays on the Amphipods of Lake Baikal (Systemat ics, comparative ecology, evolution). Irkutsk, 2000a (in Russian)
68. Takhteev V.V. Trends in the evolution of Baikal amphipods and evolutionary parallels with some marine malacostracan faunas. In: Advances in Ecological Research. Vol. 31: Ancient Lakes: Biodiversity, Ecology and Evolution. Acad. Press, 2000b;197220. DOI 10.1016/S00652504(00)310133
69. Takhteev V. On the current state of taxonomy of the Baikal Lake amphipods (Crustacea, Amphipoda) and the typological ways of constructing their system. Arthropoda Sel. 2019;28(1):374402. DOI 10.15298/arthsel.28.3.03
70. Takhteev V.V., Berezina N.A., Sidorov D.A. Checklist of the Amphipoda (Crustacea) from continental waters of Russia, with data on alien species. Arthropoda Sel. 2015;24(3):335370. DOI 10.15298/arthsel.24.3.09
71. Toews D.P.L., Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 2012;21(16):39073930. DOI 10.1111/j.1365294X.2012.05664.x
72. Väinölä R., Kamaltynov R.M. Species diversity and speciation in the endemic amphipods of Lake Baikal: molecular evidence. Crustaceana. 1999;72(8):945956
73. Weston J.N.J., Jensen E.L., Hasoon M.S.R., Kitson J.J.N., Stewart H.A., Jamieson A.J. Barriers to gene flow in the deepest ocean ecosystems: evidence from global population genomics of a cosmopolitan amphipod. Sci. Adv. 2022;8(43):eabo6672. DOI 10.1126/sciadv.abo6672
74. Wyngaard G.A., SkernMauritzen R., Malde K., Prendergast R., Peruzzi S. The salmon louse genome may be much larger than sequencing suggests. Sci. Rep. 2022;12(1):6616. DOI 10.1038/s41598022105852
75. Yampolsky L.Yu., Kamaltynov R.M., Ebert D., Filatov D.A., Chernykh V.I. Variation of allozyme loci in endemic gammarids of Lake Baikal. Biol. J. Linn. Soc. 1994;53(4):309323. DOI 10.1111/j.10958312.1994.tb01015.x
76. Yuxiang W., Peretolchina T.E., Romanova E.V., Sherbakov D.Y. Comparison of the evolutionary patterns of DNA repeats in ancient and young invertebrate species flocks of Lake Baikal. Vavilov J. Genet. Breed. 2023;27(4):349356. DOI 10.18699/VJGB2342
77. Zaidykov I.Y., Naumova E.Y., Sukhanova L.V. MtDNA polymorphism of Macrohectopus branickii Dybowsky, 1974 (Amphipoda) – an endemic pelagic key species of Lake Baikal. In: Chaplina T. (Ed.) Complex Investigation of the World Ocean (CIWO2023). Springer Nature Switzerland, 2023;223229. DOI 10.1007/9783031478512_26
78. Zolotovskaya E., Nazarova A., Saranchina A., Mutin A., Drozdova P., Lubyaga Y., Timofeyev M. Hemocyte proteome of the Lake Baikal endemic Eulimnogammarus verrucosus (Crustacea: Amphipoda) sheds light on immunerelated proteins. Biol. Commun. 2021;66(4): 290301. DOI 10.21638/spbu03.2021.402