Трансгенерационное влияние пренатального стресса на поведение и перекисное окисление липидов в структурах мозга у самок крыс в течение эстрального цикла
https://doi.org/10.18699/vjgb-24-44
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Исследовано влияние стресса у беременных самок крыс Вистар на поведение и показатели перекисного окисления липидов (ПОЛ) в неокортексе, гиппокампе и гипоталамусе у поколения самок F2 в течение эстрального цикла. Беременных самок подвергали ежедневному 1-часовому иммобилизационному стрессу с 15-го по 19-й день беременности. Далее из рожденных пренатально стрессированных и контрольных самцов и самок крыс поколения F1 формировали семейные группы: группа 1 – контрольные самка и самец, группа 2 – контрольная самка и пренатально стрессированный самец, группа 3 – пренатально стрессированная самка и контрольный самец, группа 4 – пренатально стрессированные самка и самец. Рожденных от этих семейныхпар самок поколения F2 отбирали в четыре экспериментальные группы в соответствии с семейной группой. В возрасте трех месяцев у крыс исследовали показатели поведения в тесте «открытое поле» в двух стадиях полового цикла – эструсе и диэструсе. Через 7–10 дней крыс декапитировали и производили отбор неокортекса, гипоталамуса и гиппокампа для определения уровня диеновых и триеновых конъюгатов, оснований Шиффа и степени окисленности липидов (индекса Клейна). У самок F2 с одним пренатально стрессированным родителем отсутствует межстадиальная разница в локомоторно-исследовательской активности и тревожности. Если оба родителя F1 являются пренатально стрессированными, самки крыс F2 сохраняют межстадиальные различия, схожие с контрольным паттерном, при этом по абсолютным значениям у них снижаются локомоторно-исследовательская активность и время нахождения в центре открытого поля. В неокортексе у самок F2 в группах с пренатально стрессированными матерями снижается уровень первичных продуктов ПОЛ и повышается уровень оснований Шиффа в стадии эструса. В гиппокампе у самок F2 в группах с пренатально стрессированными отцами снижается уровень оснований Шиффа в стадии эструса, а уровень первичных продуктов ПОЛ повышается в группе 2 и снижается в группе 4. В гипоталамусе у самок F2 в группах с пренатально стрессированными матерями уровень оснований Шиффа повышается в стадии эструса и снижается в диэструсе, кроме того, в группе 3 повышается уровень первичных продуктов ПОЛ в стадии эструса. Таким образом, выявлено влияние пренатального стресса как матери F1, так и отца F1 на показатели поведения и уровень ПОЛ в неокортексе, гиппокампе и гипоталамусе у самок крыс поколения F2 в эструсе и диэструсе.
Ключевые слова
Об авторах
А. В. ВьюшинаРоссия
Санкт-Петербург
А. В. Притворова
Россия
Санкт-Петербург
С. Г. Пивина
Россия
Санкт-Петербург
Н. Э. Ордян
Россия
Санкт-Петербург
Список литературы
1. Adams R.C.M., Smith C. In utero exposure to maternal chronic inflammation transfers pro-inflammatory profile to generation F2 via sexspecific mechanisms. Front. Immunol. 2020;11:48. https://doi.org/10.3389/fimmu.2020.00048
2. Aiken C.E., Tarry-Adkins J.L., Ozanne S.E. Transgenerational developmental programming of ovarian reserve. Sci. Rep. 2015;5:16175. https://doi.org/10.1038/srep16175
3. Aiken C.E., Tarry-Adkins J.L., Spiroski A., Nuzzo A.M., Ashmore T.J., Rolfo A., Sutherland M.J., Camm E.J., Giussani D.A., Ozanne S.E. Chronic gestational hypoxia accelerates ovarian aging and lowers ovarian reserve in next-generation adult rats. FASEB J. 2019;33(6): 7758-7766. https://doi.org/10.1096/fj.201802772R
4. Arutyunyan A.V., Dubinina E.E., Zybina N.N. Methods of Evaluation of Free-radical Oxidation and the Antioxidant System. Saint Petersburg: Foliant Publ., 2000 (in Russian)
5. Babenko O., Kovalchuk I., Metz G.A.S. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci. Biobehav. Rev. 2015;48:70-91. https://doi.org/10.1016/j.neubiorev.2014.11.013
6. Bale T.L. Lifetime stress experience: transgenerational epigenetics and germ cell programming. Dialogues Clin. Neurosci. 2014;16(3): 297-305. https://doi.org/10.31887/DCNS.2014.16.3/tbale
7. Bale T.L. Epigenetic and transgenerational reprogramming of brain development. Nat. Rev. Neurosci. 2015;16(6):332-344. https://doi.org/10.1038/nrn3818
8. Baraboy V.A., Brekhman I.I., Golotin V.G., Kudriashov Yu.B. Peroxidation and Stress. Saint Petersburg: Nauka Publ., 1992 (in Russian)
9. Bidlack W.R., Tappel A.L. Fluorescent products of phospholipids during lipid peroxidation. Lipids. 1973;8(4):203-207. https://doi.org/10.1007/BF02544636
10. Brunton P.J. Effects of maternal exposure to social stress during pregnancy: consequences for mother and offspring. Reproduction. 2013; 146(5):R175-R189. https://doi.org/10.1530/REP-13-0258
11. Dennery P.A. Oxidative stress in development: nature or nurture? Free Radic. Biol. Med. 2010;49(7):1147-1151. https://doi.org/10.1016/j.freeradbiomed.2010.07.011
12. Dunn G.A., Morgan C.P., Bale T.L. Sex-specificity in transgenerational epigenetic programming. Horm. Behav. 2011;59(3):290-295. https://doi.org/10.1016/j.yhbeh.2010.05.004
13. Dyban A.P. Early Development of Mammals. Leningrad, 1988 (in Russian)
14. Essex M.J., Boyce W.T., Hertzman C., Lam L.L., Armstrong J.M., Neumann S.M.A., Kobor M.S. Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence. Child Dev. 2013;84(1):58-75. https://doi.org/10.1111/j.1467-8624.2011.01641.x
15. Graf A.V., Dunaeva T.Y., Maklakova A.S., Maslova M.V., Sokolova N.A., Trofimova L.K. Transgenerational consequences of acute antenatal stress in pregnant rats. Rossiyskiy Fiziologicheskiy Zhurnal imeni Ivana Mikhaylovicha Sechenova = Russian Journal of Physiology. 2012;98(3):331-341 (in Russian)
16. Grundwald N.J., Brunton P.J. Prenatal stress programs neuroendocrine stress responses and affective behaviors in second generation rats in a sex-dependent manner. Psychoneuroendocrinology. 2015;62: 204-216. https://doi.org/10.1016/j.psyneuen.2015.08.010
17. Guilbert F., Lumineau S., Kotrschal K., Mostl E., Richard-Yris M., Houdelier C. Trans-generational effects of prenatal stress in quail. Proc. Biol. Sci. 2012;280(1753):20122368. https://doi.org/10.1098/rspb.2012.2368
18. Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. New York: Oxford University Press, 2007
19. Huerta-Cervantes M., Peña-Montes D.J., López-Vázquez M.A., Montoya-Pérez R., Cortés-Rojo C., Olvera-Cortés M.E., Saavedra-Molina A. Effects of gestational diabetes in cognitive behavior, oxidative stress and metabolism on the second-generation off-spring of rats. Nutrients. 2021;13(5):1575. https://doi.org/10.3390/nu13051575
20. Levinson A.L., Igonina T.N., Rozhkova I.N., Brusentsev E.Yu., Amstislavsky S.Ya. Psycho-emotional stress, folliculogenesis, and reproductive technologies: clinical and experimental data. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(5):431-441. https://doi.org/10.18699/VJGB-22-53 (in Russian)
21. Levitsky E.L., Gubsky J.I. Free radical damage of the nuclear genetic apparatus of cells. Ukrainskiy Biokhimicheskiy Zhurnal = The Ukrainian Biochemical Journal. 1994;66(4):18-30 (in Russian)
22. Marcondes F.K., Miguel K.J., Melo L.L., Spadari-Bratfisch R.C. Estrous cycle influences the response of female rats in the elevated plus-maze test. Physiol. Behav. 2001;74(4-5):435-440. https://doi.org/10.1016/s0031-9384(01)00593-5
23. Matthews S.G., Phillips D.I. Transgenerational inheritance of stress pathology. Exp. Neurol. 2012;233(1):95-101. https://doi.org/10.1016/j.expneurol.2011.01.009
24. Miller C.R., Halbing A.A., Patisaul H.B., Meitzen J. Interaction of the estrous cycle, novelty and light on female and male rat open field locomotor ant anxiety-related behaviors. Physiol. Behav. 2021;228: 113203. https://doi.org/10.1016/j.physbeh.2020.113203
25. Moisiadis V.G., Constantinof A., Kostaki A., Szyf M., Matthews S. Prenatal glucocorticoid exposure modifies endocrine function and behavior for 3 generations following maternal and paternal transmission. Sci. Rep. 2017;7(1):11814. https://doi.org/10.1038/s41598-017-11635-w
26. Mora S., Dussaubat N., Diaz-Veliz G. Effects of the estrous cycle and ovarian hormones on behavioral indices of anxiety in female rats. Psychoneuroendocrinology. 1996;21(7):609-620. https://doi.org/10.1016/s0306-4530(96)00015-7
27. Ordyan N.E., Pivina S.G. Behavioral characteristics and stress reaction of the pituitary-adrenal system in prenatally stressed rats. Rossiyskiy Fiziologicheskiy Zhurnal imeni Ivana Mikhaylovicha Sechenova = Russian Journal of Physiology. 2003;89(1):52-59 (in Russian)
28. Piquer B., Ruz F., Barra R., Lara H.E. Gestational sympathetic stress programs the fertility of offspring: a rat multi-generation study. Int. J. Environ. Res. Public Health. 2022;19(5):3044. https://doi.org/10.3390/ijerph19053044
29. Pivina S.G., Rakitskaya V.V., Shamolina T.S., Ordyan N.E. Change of the uterus morphometric parameters in the prenatally stressed rats. Rossiyskiy Fiziologicheskiy Zhurnal imeni Ivana Mikhaylovicha Sechenova = Russian Journal of Physiology. 2010;96(6):621-626 (in Russian)
30. Provençal N., Binder E.B. The effect of early life stress on the epigenome: from the womb to adulthood and even before. Exp. Neurol. 2015;268:10-20. https://doi.org/10.1016/j.expneurol.2014.09.001
31. Reznikov A.G., Pishak V.P., Nosenko N.D., Tkachyuk S.S., Myslitskiy V.F. Prenatal Stress and Neuroendocrine Pathology. Chernivtsi: Medacademia Publ., 2004 (in Russian)
32. Rice D., Barone S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 2000;108(Suppl. 3):511-533. https://doi.org/10.1289/ehp.00108s3511
33. Rodgers A.B., Bale T.L. Germ cell origins of posttraumatic stress disorder risk: the transgenerational impact of parental stress experience. Biol. Psychiatry. 2015;78(5):307-314. https://doi.org/10.1016/j.biopsych.2015.03.018
34. Sanches-Garrido M.A., Garcia-Galiano D., Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum. Reprod. Update. 2022;28(3):346-375. https://doi.org/10.1093/humupd/dmac005
35. Thompson L.P., Al-Hasan Y. Impact of oxidative stress in fetal programming. J. Pregnancy. 2012;2012:582748. https://doi.org/10.1155/2012/582748
36. Yao S., Lopes-Tello J., Sferruzzi-Perri A.N. Developmental programming of the female reproductive system - a review. Biol. Reprod. 2021;104(4):745-770. https://doi.org/10.1093/biolre/ioaa232
37. Zaidan H., Gaisler-Salomon I. Prereproductive stress in adolescent female rats affects behavior and corticosterone levels in secondgeneration offspring. Psychoneuroendocrinology. 2015;58:120-129. https://doi.org/10.1016/j.psyneuen.2015.04.013
38. Zhang H.-L., Yi M., Li D., Li R., Zhao Y., Qiao J. Transgenerational inheritance of reproductive and metabolic phenotypes in PCOS rats. Front. Endocrinol. 2020;11:144. https://doi.org/10.3389/fendo.2020.00144