Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Действие амисульприда на экспрессию серотониновых рецепторов, нейротрофического фактора BDNF и его рецепторов при сверхэкспрессии склонного к агрегации тау-белка с мутацией [R406W] у мышей

https://doi.org/10.18699/vjgb-24-45

Аннотация

Серотониновые рецепторы 5-HT7 (5-HT7R) привлекают все больше внимания в качестве одного из важных звеньев в механизмах развития болезни Альцгеймера и возможной мишени для лечения различных тау-патологий. В настоящей работе исследовано влияние амисульприда (обратный агонист 5-HT7R) в модели экспериментального повышения экспрессии гена, кодирующего склонный к агрегации белок человека Tau[R406W], в префронтальной коре мышей линии C57BL/6J на кратковременную память и экспрессию генов, участвующих в развитии таупатии (Htr7 и Cdk5), а также биомаркеров нейродегенеративных процессов – гена Bdnf и его рецепторов TrkB (ген Ntrk2) и p75NTR (ген Ngfr). В тесте на кратковременную память мыши не было обнаружено разницы по индексу дискриминации между мышами, которым вводили AAV-Tau[R406W], и мышами с AAV-EGFP. Амисульприд не повлиял на данный показатель. Введение AAV-Tau[R406W] привело к повышению экспрессии генов Htr7, Htr1a и Cdk5 в префронтальной коре по сравнению с животными группы AAV-EGFP. При этом амисульприд в дозе 10 мг/кг у животных группы AAV-Tau[R406W] вызвал снижение уровня мРНК генов Htr7 и Htr1a по сравнению с животными группы AAV-Tau[R406W], которым вводили физиологический раствор. Выявлено снижение экспрессии генов Bdnf и Ntrk2 в префронтальной коре после введения AAV-Tau[R406W]. При этом амисульприд в различных дозах (3 и 10 мг/кг) вызывал такое же снижение транскрипции этих генов у мышей без таупатии. Интересно также, что у мышей группы AAV-EGFP после введения амисульприда в дозе 10 мг/кг повышался уровень мРНК гена Ngfr. Полученные данные позволяют рассматривать амисульприд в качестве агента для восстановления нормальной функции тау-белка. Однако следует учитывать возможный негативный эффект амисульприда при длительном применении, отражающийся в увеличении экспрессии гена Ngfr и снижении экспрессии генов Bdnf и Ntrk2, что может указывать на усиление нейродегенеративных процессов.

Об авторах

Е. М. Кондаурова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск 



А. А. Комарова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск 



Т. В. Ильчибаева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск 



А. Я. Родный
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск 



Е. А. Заливина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск 



В. С. Науменко
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск 



Список литературы

1. Arendt D.H., Smith J.P., Bastida C.C., Prasad M.S., Oliver K.D., Eyster K.M., Summers T.R., Delville Y., Summers C.H. Contrasting hippocampal and amygdalar expression of genes related to neural plasticity during escape from social aggression. Physiol. Behav. 2012;107(5):670-679. DOI 10.1016/j.physbeh.2012.03.005

2. Bettens K., Sleegers K., Van Broeckhoven C. Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum. Mol. Genet. 2010;19(R1):R4-R11. DOI 10.1093/hmg/ddq142

3. Chang W.Y., Yang Y.T., She M.P., Tu C.H., Lee T.C., Wu M.S., Sun C.H., Hsin L.W., Yu L.C. 5-HT(7) receptor-dependent intestinal neurite outgrowth contributes to visceral hypersensitivity in irritable bowel syndrome. Lab. Invest. 2022;102(9):1023-1037. DOI 10.1038/s41374-022-00800-z

4. Edelmann E., Cepeda-Prado E., Franck M., Lichtenecker P., Brigadski T., Lessmann V. Theta burst firing recruits BDNF release and signaling in postsynaptic CA1 neurons in spike-timing-dependent LTP. Neuron. 2015;86(4):1041-1054. DOI 10.1016/j.neuron.2015.04.007

5. Elliott E., Atlas R., Lange A., Ginzburg I. Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a PI-3Kinase signalling mechanism. Eur. J. Neurosci. 2005;22(5): 1081-1089. DOI 10.1111/j.1460-9568.2005.04290.x

6. Eremin D.V., Kondaurova E.M., Rodny A.Ya., Molobekova K.A., Kudlay D.A., Naumenko V.S. Serotonin receptors – a potential target for the treatment of Alzheimer’s disease. Biokhimiya = Biochemistry. 2023;88(12):2399-2421. DOI 10.31857/S032097252312 0059 (in Russian)

7. Gossye H., Van Mossevelde S., Sieben A., Bjerke M., Hendrickx Van de Craen E., van der Zee J., De Deyn P.P., De Bleecker J., Versijpt J., van den Ende J., Deryck O., Bourgeois P., Bier J.C., Goethals M., Vandenberghe R., Engelborghs S., Van Broeckhoven C. Patients carrying the mutation p.R406W in MAPT present with non-conforming phenotypic spectrum. Brain. 2023;146(4):1624-1636. DOI 10.1093/brain/awac362

8. Grimm D., Kay M.A., Kleinschmidt J.A. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol. Ther. 2003;7(6):839-850. DOI 10.1016/s1525-0016(03)00095-9

9. Grundke-Iqbal I., Iqbal K., Tung Y.C., Quinlan M., Wisniewski H.M., Binder L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA. 1986;83(13):4913-4917. DOI 10.1073/pnas.83.13.4913

10. Hock C., Heese K., Hulette C., Rosenberg C., Otten U. Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch. Neurol. 2000;57(6):846-851. DOI 10.1001/archneur.57.6.846

11. Huang G.B., Zhao T., Li C.R., Sui Z.Y., Kang N.I., Han E.H., Chung Y.C. Choline acetyltransferase expression in rat prefrontal cortex and hippocampus after acute and chronic exposure to amisulpride, haloperidol, and risperidone. Neurosci. Lett. 2012;528(2):131-136. DOI 10.1016/j.neulet.2012.09.024

12. Huey E.D., Putnam K.T., Grafman J. A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology. 2006;66(1):17-22. DOI 10.1212/01.wnl.0000191304.55196.4d

13. Hutton M., Lendon C.L., Rizzu P., Baker M., Froelich S., Houlden H., Pickering-Brown S. … Oostra B.A., Hardy J., Goate A., van Swieten J., Mann D., Lynch T., Heutink P. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393(6686):702-705. DOI 10.1038/31508

14. Jahreis K., Brüge A., Borsdorf S., Müller F.E., Sun W., Jia S., Kang D.M., Boesen N., Shin S., Lim S., Koroleva A., Satala G., Bojarski A.J., Rakuša E., Fink A., Doblhammer-Reiter G., Kim Y.K., Dityatev A., Ponimaskin E., Labus J. Amisulpride as a potential disease-modifying drug in the treatment of tauopathies. Alzheimers Dement. 2023;19(12):5482-5497. DOI 10.1002/alz.13090

15. Jóźwiak-Bębenista M., Jasinska-Stroschein M., Kowalczyk E. The differential effects of neuroleptic drugs and PACAP on the expression of BDNF mRNA and protein in a human glioblastoma cell line. Acta Neurobiol. Exp. 2017;77(3):205-213

16. Khotskin N.V., Plyusnina A.V., Kulikova E.A., Bazhenova E.Y., Fursenko D.V., Sorokin I.E., Kolotygin I., Mormede P., Terenina E.E., Shevelev O.B., Kulikov A.V. On association of the lethal yellow (AY) mutation in the agouti gene with the alterations in mouse brain and behavior. Behav. Brain Res. 2019;359:446-456. DOI 10.1016/j.bbr.2018.11.013

17. Kobe F., Guseva D., Jensen T.P., Wirth A., Renner U., Hess D., Muller M., Medrihan L., Zhang W., Zhang M., Braun K., Westerholz S., Herzog A., Radyushkin K., El-Kordi A., Ehrenreich H., Richter D.W., Rusakov D.A., Ponimaskin E. 5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner. J. Neurosci. 2012;32(9):2915-2930. DOI 10.1523/JNEUROSCI.2765-11.2012

18. Kondaurova E.M., Bazovkina D.V., Naumenko V.S. 5-HT1A/5-HT7 receptor interplay: Chronic activation of 5-HT7 receptors decreases the functional activity of 5-HT1A receptor and its сontent in the mouse brain. Molecular Biology. 2017;51(1):136-142. DOI 10.1134/S0026893316060108

19. Kondaurova E.M., Plyusnina A.V., Ilchibaeva T.V., Eremin D.V., Rodnyy A.Y., Grygoreva Y.D., Naumenko V.S. Effects of a Cc2d1a/ Freud­1 Knockdown in the hippocampus on behavior, the serotonin system, and BDNF. Int. J. Mol. Sci. 2021;22(24):13319. DOI 10.3390/ijms222413319

20. Kulikov A.V., Naumenko V.S., Voronova I.P., Tikhonova M.A., Popova N.K. Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor mRNAs using genomic DNA as an external standard. J. Neurosci. Methods. 2005;141(1):97-101. DOI 10.1016/j.jneumeth.2004.06.005

21. Kulikov A.V., Tikhonova M.A., Kulikov V.A. Automated measurement of spatial preference in the open field test with transmitted lighting. J. Neurosci. Methods. 2008;170(2):345-351. DOI 10.1016/j.jneumeth.2008.01.024

22. Labus J., Röhrs K.F., Ackmann J., Varbanov H., Müller F.E., Jia S., Jahreis K., Vollbrecht A.L., Butzlaff M., Schill Y., Guseva D., Böhm K., Kaushik R., Bijata M., Marin P., Chaumont-Dubel S., Zeug A., Dityatev A., Ponimaskin E. Amelioration of Tau pathology and memory deficits by targeting 5-HT7 receptor. Prog. Neurobiol. 2021;197:101900. DOI 10.1016/j.pneurobio.2020.101900

23. Minaya M.A., Mahali S., Iyer A.K., Eteleeb A.M., Martinez R., Huang G., Budde J., Temple S., Nana A.L., Seeley W.W., Spina S., Grinberg L.T., Harari O., Karch C.M. Conserved gene signatures shared among MAPT mutations reveal defects in calcium signaling. Front. Mol. Biosci. 2023;10:1051494. DOI 10.3389/fmolb.2023.1051494

24. Molobekova C.A., Kondaurova E.M., Ilchibaeva T.V., Rodnyy A.Y., Stefanova N.A., Kolosova N.G., Naumenko V.S. Amisulpride decreases tau protein hyperphosphorylation in the brain of OXYS rats. Curr. Alzheimer Res. 2023;20(7):496-505. DOI 10.2174/1567205020666230828144651

25. Murley A.G., Rowe J.B. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain. 2018;141(5):1263-1285. DOI 10.1093/brain/awx327

26. Naumenko V.S., Kulikov A.V. Quantitative assay of 5-HT1A receptor gene expression in the brain. Molecular Biology. 2006;40(1):30-36. DOI 10.1134/S0026893306010067

27. Naumenko V.S., Osipova D.V., Kostina E.V., Kulikov A.V. Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain. J. Neurosci. Methods. 2008;170(2):197-203. DOI 10.1016/j.jneumeth.2008.01.008

28. Park S.W., Seo M.K., Cho H.Y., Lee J.G., Lee B.J., Seol W., Kim Y.H. Differential effects of amisulpride and haloperidol on dopamine D2 receptor-mediated signaling in SH-SY5Y cells. Neuropharmacology. 2011;61(4):761-769. DOI 10.1016/j.neuropharm.2011.05.022

29. Perez M., Lim F., Arrasate M., Avila J. The FTDP-17-linked mutation R406W abolishes the interaction of phosphorylated tau with microtubules. J. Neurochem. 2000;74(6):2583-2589. DOI 10.1046/j.1471-4159.2000.0742583.x

30. Pisani A., Paciello F., Del Vecchio V., Malesci R., De Corso E., Cantone E., Fetoni A.R. The role of BDNF as a biomarker in cognitive and sensory neurodegeneration. J. Pers. Med. 2023;13(4):652. DOI 10.3390/jpm13040652

31. Popova N.K., Naumenko V.S. Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem. Expert Opin. Ther. Targets. 2019;23(3):227-239. DOI 10.1080/14728222.2019.1572747

32. Renner U., Zeug A., Woehler A., Niebert M., Dityatev A., Dityateva G., Gorinski N., Guseva D., Abdel-Galil D., Frohlich M., Doring F., Wischmeyer E., Richter D.W., Neher E., Ponimaskin E.GHeterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J. Cell Sci. 2012;125(Pt. 10):2486-2499. DOI 10.1242/jcs.101337

33. Rizos E.N., Papadopoulou A., Laskos E., Michalopoulou P.G., Kastania A., Vasilopoulos D., Katsafouros K., Lykouras L. Reduced serum BDNF levels in patients with chronic schizophrenic disorder in relapse, who were treated with typical or atypical antipsychotics. World J. Biol. Psychiatry. 2010;11(2-2):251-255. DOI 10.3109/15622970802182733

34. Rodnyy A.Y., Kondaurova E.M., Bazovkina D.V., Kulikova E.A., Ilchibaeva T.V., Kovetskaya A.I., Baraboshkina I.A., Bazhenova E.Y., Popova N.K., Naumenko V.S. Serotonin 5-HT7 receptor overexpression in the raphe nuclei area produces antidepressive effect and affects brain serotonin system in male mice. J. Neurosci. Res. 2022; 100(7):1506-1523. DOI 10.1002/jnr.25055

35. Rovelet-Lecrux A., Lecourtois M., Thomas-Anterion C., Le Ber I., Brice A., Frebourg T., Hannequin D., Campion D. Partial deletion of the MAPT gene: a novel mechanism of FTDP-17. Hum. Mutat. 2009;30(4):E591-E602. DOI 10.1002/humu.20979

36. Samarajeewa A., Goldemann L., Vasefi M.S., Ahmed N., Gondora N., Khanderia C., Mielke J.G., Beazely M.A. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation. Front. Behav. Neurosci. 2014;8:391. DOI 10.3389/fnbeh.2014.00391

37. Shen L.L., Li W.W., Xu Y.L., Gao S.H., Xu M.Y., Bu X.L., Liu Y.H., Wang J., Zhu J., Zeng F., Yao X.Q., Gao C.Y., Xu Z.Q., Zhou X.F., Wang Y.J. Neurotrophin receptor p75 mediates amyloid β-induced tau pathology. Neurobiol. Dis. 2019;132:104567. DOI 10.1016/j.nbd.2019.104567

38. Solas M., Van Dam D., Janssens J., Ocariz U., Vermeiren Y., De Deyn P.P., Ramirez M.J. 5-HT7 receptors in Alzheimer’s disease. Neurochem. Int. 2021;150:105185. DOI 10.1016/j.neuint.2021.105185

39. Song J.H., Yu J.T., Tan L. Brain-derived neurotrophic factor in Alzheimer’s disease: risk, mechanisms, and therapy. Mol. Neurobiol. 2015;52(3):1477-1493. DOI 10.1007/s12035-014-8958-4

40. Stefanova N.A., Muraleva N.A., Korbolina E.E., Kiseleva E., Maksimova K.Y., Kolosova N.G. Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats. Oncotarget. 2015;6(3):1396-1413. DOI 10.18632/oncotarget.2751

41. Strang K.H., Golde T.E., Giasson B.I. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab. Invest. 2019;99(7):912- 928. DOI 10.1038/s41374-019-0197-x

42. Xia Y., Sorrentino Z.A., Kim J.D., Strang K.H., Riffe C.J., Giasson B.I. Impaired tau-microtubule interactions are prevalent among pathogenic tau variants arising from missense mutations. J. Biol. Chem. 2019;294(48):18488-18503. DOI 10.1074/jbc.RA119.010178


Рецензия

Просмотров: 862


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)