Паттерны экспрессии рецепторов дофамина и основных элементов нейротрофических (BDNF, CDNF) систем в критические периоды онтогенеза в структурах мозга мышей с аутизм-подобным поведением (BTBR) или его отсутствием (С57BL/6J)
https://doi.org/10.18699/vjgb-24-46
Аннотация
Анализ механизмов расстройства аутистического спектра (РАС) является актуальной задачей в связи с широкой и постоянно растущей распространенностью этого состояния. Исследование критических периодов нейроонтогенеза представляет интерес, поскольку манифестацию РАС нередко связывают с внутриутробными нарушениями развития головного мозга. Одна из перспективных на сегодняшний день гипотез постулирует связь патогенеза РАС с дисфункцией нейротрансмиттерных и нейротрофических систем. В настоящей работе исследована экспрессия генов ключевых рецепторов дофамина (Drd1, Drd2), нейротрофического фактора мозга (Bdnf), его рецепторов (Ntrkb2, Ngfr) и опосредующего действие BDNF транскрипционного фактора Creb1, а также дофаминового нейротрофического фактора (Cdnf) в периоды эмбриогенеза (e14 и е18) и постнатального развития (р14, р28, р60) в гиппокампе и фронтальной коре мышей BTBR с аутистизм-подобным поведением по сравнению с нейротипичной линией С57BL/6 J. У эмбрионов BTBR на 14-й день пренатального развития в гиппокампе и во фронтальной коре установлено увеличение экспрессии гена Ngfr, кодирующего рецептор p75NTR, трансдукция сигнала которого в эмбриогенезе приводит к активации апоптоза. Снижение экспрессии генов Cdnf, Bdnf и его рецептора Ntrkb2, а также дофаминовых рецепторов (Drd1, Drd2) у мышей BTBR обнаружено в постнатальный период преимущественно во фронтальной коре, при этом в гиппокампе у половозрелых особей (р60) зафиксировано падение уровня лишь мРНК Drd2. Полученные результаты позволяют предположить, что снижение в постнатальном периоде экспрессии генов Cdnf, Bdnf и Ntrkb2, а также дофаминовых рецепторов во фронтальной коре может приводить к существенным изменениям, характерным для РАС, как морфологии нейронов, так и дофаминовой нейротрансмиссии в корковых структурах мозга. Вместе с тем установленный рост экспрессии p75NTR в критический для развития гиппокампа и фронтальной коры 14-й день эмбриогенеза, возможно, является ключевым для формирования раннего аутизма.
Ключевые слова
Об авторах
П. Д. ПравиковаРоссия
Новосибирск
М. А. Арссан
Россия
Новосибирск
Е. А. Заливина
Россия
Новосибирск
Е. М. Кондаурова
Россия
Новосибирск
Е. А. Куликова
Россия
Новосибирск
И. И. Белокопытова
Россия
Новосибирск
В. С. Науменко
Россия
Новосибирск
Список литературы
1. Adhya D., Swarup V., Nagy R., Dutan L., Shum C., Valencia-Alarcуn E.P., Jozwik K.M., Mendez M.A., Horder J., Loth E., Nowosiad P., Lee I., Skuse D., Flinter F.A., Murphy D., McAlonan G., Geschwind D.H., Price J., Carroll J., Srivastava D.P., Baron-Cohen S. Atypical neurogenesis in induced pluripotent stem cells from autistic individuals. Biol. Psychiatry. 2021;89(5):486-496. DOI 10.1016/j.biopsych.2020.06.014
2. Aljanabi S.M., Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1997;25(22):4692-4693. DOI 10.1093/nar/25.22.4692
3. Anghelescu I., Dettling M. Neuron number in children with autism. JAMA. 2012;307(8):783. DOI 10.1001/jama.2012.191
4. Belokopytova I.I., Kondaurova E.M., Kulikova E.A., Ilchibaeva T.V., Naumenko V.S., Popova N.K. Effects of the Cc2d1a/Freud-1 knockdown in the hippocampus of BTBR mice on the autistic-like behavior, expression of serotonin 5-HT1A and D2 dopamine receptors, and CREB and NF-κB intracellular signaling. Biochemistry (Mosc.). 2022;87(10):1206-1218. DOI 10.1134/S0006297922100145
5. Bohlen M.O., Bailoo J.D., Jordan R.L., Wahlsten D. Hippocampal commissure defects in crosses of four inbred mouse strains with absent corpus callosum. Genes Brain Behav. 2012;11(7):757-766. DOI 10.1111/j.1601-183X.2012.00802.x
6. Boћok V., Yu L.Y., Palgi J., Arumӓe U. Antioxidative CXXC peptide motif from mesencephalic astrocyte-derived neurotrophic factor antagonizes programmed cell death. Front. Cell Dev. Biol. 2018;6:106. DOI 10.3389/fcell.2018.00106
7. Bolivar V.J., Walters S.R., Phoenix J.L. Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav. Brain Res. 2007;176(1):21-26. DOI 10.1016/j.bbr.2006.09.007
8. Castrén E., Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol. Psychiatry. 2017;22(8):1085-1095. DOI 10.1038/mp.2017.61
9. Cellot G., Maggi L., Di Castro M.A., Catalano M., Migliore R., Migliore M., Scattoni M.L., Calamandrei G., Cherubini E. Premature changes in neuronal excitability account for hippocampal network impairment and autistic-like behavior in neonatal BTBR T+tf/J mice. Sci. Rep. 2016;6:31696. DOI 10.1038/srep31696
10. Chen V.S., Morrison J.P., Southwell M.F., Foley J.F., Bolon B., Elmore S.A. Histology atlas of the developing prenatal and postnatal mouse central nervous system, with emphasis on prenatal days E7.5 to E18.5. Toxicol. Pathol. 2017;45(6):705-744. DOI 10.1177/0192623317728134
11. Courchesne E., Mouton P.R., Calhoun M.E., Semendeferi K., AhrensBarbeau C., Hallet M.J., Barnes C.C., Pierce K. Neuron number and size in prefrontal cortex of children with autism. JAMA. 2011; 306(18):2001-2010. DOI 10.1001/jama.2011.1638
12. Courchesne E., Pramparo T., Gazestani V.H., Lombardo M.V., Pierce K., Lewis N.E. The ASD Living Biology: from cell proliferation to clinical phenotype. Mol. Psychiatry. 2019;24(1):88-107. DOI 10.1038/s41380-018-0056-y
13. Courchesne E., Gazestani V.H., Lewis N.E. Prenatal origins of ASD: The when, what, and how of ASD development. Trends Neurosci. 2020;43(5):326-342. DOI 10.1016/j.tins.2020.03.005
14. Crandall J.E., McCarthy D.M., Araki K.Y., Sims J.R., Ren J.Q., Bhide P.G. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J. Neurosci. 2007;27(14):3813-3822. DOI 10.1523/JNEUROSCI.5124- 06.2007
15. Crawley J.N. Twenty years of discoveries emerging from mouse models of autism. Neurosci. Biobehav. Rev. 2023;146:105053. DOI 10.1016/j.neubiorev.2023.105053
16. DiCarlo G.E., Aguilar J.I., Matthies H.J., Harrison F.E., Bundschuh K.E., West A., Hashemi P., Herborg F., Rickhag M., Chen H., Gether U., Wallace M.T., Galli A. Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J. Clin. Invest. 2019;129(8):3407- 3419. DOI 10.1172/JCI127411
17. Enticott P.G., Kennedy H.A., Rinehart N.J., Tonge B.J., Bradshaw J.L., Fitzgerald P.B. GABAergic activity in autism spectrum disorders: an investigation of cortical inhibition via transcranial magnetic stimulation. Neuropharmacology. 2013;68:202-209. DOI 10.1016/j.neuropharm.2012.06.017
18. Fenner B.M. Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev. 2012;23(1-2):15-24. DOI 10.1016/j.cytogfr.2012.01.002
19. Finlay B.L., Darlington R.B. Linked regularities in the development and evolution of mammalian brains. Science. 1995;268(5217): 1578-1584. DOI 10.1126/science.7777856
20. Frazier T.W., Hardan A.Y. A meta-analysis of the corpus callosum in autism. Biol. Psychiatry. 2009;66(10):935-941. DOI 10.1016/j.biopsych.2009.07.022
21. Garcia K.L., Yu.G., Nicolini C., Michalski B., Garzon D.J., Chiu V.S., Tongiorgi E., Szatmari P., Fahnestock M. Altered balance of proteolytic isoforms of pro-brain-derived neurotrophic factor in autism. J. Neuropathol. Exp. Neurol. 2012;71(4):289-297. DOI 10.1097/NEN.0b013e31824b27e4
22. Hashem S., Nisar S., Bhat A.A., Yadav S.K., Azeem M.W., Bagga P., Fakhro K., Reddy R., Frenneaux M.P., Haris M. Genetics of structural and functional brain changes in autism spectrum disorder. Transl. Psychiatry. 2020;10(1):229. DOI 10.1038/s41398-020-00921-3
23. Hettinger J.A., Liu X., Schwartz C.E., Michaelis R.C., Holden J.J. A DRD1 haplotype is associated with risk for autism spectrum disorders in male-only affected sib-pair families. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008;147B(5):628-636. DOI 10.1002/ajmg.b.30655
24. Ilchibaeva T., Tsybko A., Lipnitskaya M., Eremin D., Milutinovich K., Naumenko V., Popova N. Brain-derived neurotrophic factor (BDNF) in mechanisms of autistic-like behavior in BTBR mice: crosstalk with the dopaminergic brain system. Biomedicines. 2023;11(5):1482. DOI 10.3390/biomedicines11051482
25. Kanner L. Autistic disturbances of affective contact. Nervous Child. 1943;2:217-250
26. Kemper T.L., Bauman M. Neuropathology of infantile autism. J. Neuropathol. Exp. Neurol. 1998;57(7):645-652. DOI 10.1097/00005072-199807000-00001
27. Kondaurova E.M., Plyusnina A.V., Ilchibaeva T.V., Eremin D.V., Rodnyy A.Y., Grygoreva Y.D., Naumenko V.S. Effects of a Cc2d1a/ Freud-1 knockdown in the hippocampus on behavior, the serotonin system, and BDNF. Int. J. Mol. Sci. 2021;22(24):13319. DOI 10.3390/ijms222413319
28. Koshimizu H., Kiyosue K., Hara T., Hazama S., Suzuki S., Uegaki K., Nagappan G., Zaitsev E., Hirokawa T., Tatsu Y., Ogura A., Lu B., Kojima M. Multiple functions of precursor BDNF to CNS neurons: negative regulation of neurite growth, spine formation and cell survival. Mol. Brain. 2009;2:27. DOI 10.1186/1756-6606-2-27
29. Krishnan A., Zhang R., Yao V., Theesfeld C.L., Wong A.K., Tadych A., Volfovsky N., Packer A., Lash A., Troyanskaya O.G. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat. Neurosci. 2016;19(11):1454-1462. DOI 10.1038/nn.4353
30. Kulikov A.V., Naumenko V.S., Voronova I.P., Tikhonova M.A., Popova N.K. Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor mRNAs using genomic DNA as an external standard. J. Neurosci. Methods. 2005;141(1):97-101. DOI 10.1016/j.jneumeth.2004.06.005
31. Küppers E., Beyer C. Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells. Neuroreport. 2001;12(6):1175-1179. DOI 10.1097/00001756-200105080-00025
32. Lessmann V., Gottmann K., Malcangio M. Neurotrophin secretion: current facts and future prospects. Prog. Neurobiol. 2003;69(5):341- 374. DOI 10.1016/s0301-0082(03)00019-4
33. Lindholm P., Saarma M. Cerebral dopamine neurotrophic factor protects and repairs dopamine neurons by novel mechanism. Mol. Psychiatry. 2022;27(3):1310-1321. DOI 10.1038/s41380-021-01394-6
34. Lindholm P., Voutilainen M.H., Laurén J., Peränen J., Leppänen V.M., Andressoo J.O., Lindahl M., Janhunen S., Kalkkinen N., Timmusk T., Tuominen R.K., Saarma M. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature. 2007;448(7149):73-77. DOI 10.1038/nature05957
35. Lindholm P., Peränen J., Andressoo J.O., Kalkkinen N., Kokaia Z., Lindvall O., Timmusk T., Saarma M. MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol. Cell. Neurosci. 2008;39(3): 356-371. DOI 10.1016/j.mcn.2008.07.016
36. Liu S.H., Shi X.J., Fan F.C., Cheng Y. Peripheral blood neurotrophic factor levels in children with autism spectrum disorder: a meta-analysis. Sci. Rep. 2021;11(1):15. DOI 10.1038/s41598-020-79080-w
37. Loones M.T., Chang Y., Morange M. The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation. Cell Stress Chaperones. 2000;5(4):291-305. DOI 10.1379/1466-1268(2000)005<0291:tdohsp>2.0.co;2
38. Lu B., Pang P.T., Woo N.H. The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 2005;6(8):603-614. DOI 10.1038/nrn1726
39. Mangale V.S., Hirokawa K.E., Satyaki P.R., Gokulchandran N., Chikbire S., Subramanian L., Shetty A.S., Martynoga B., Paul J., Mai M.V., Li Y., Flanagan L.A., Tole S., Monuki E.S. Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science. 2008;319(5861):304-309. DOI 10.1126/science.1151695
40. Mariani J., Coppola G., Zhang P., Abyzov A., Provini L., Tomasini L., Amenduni M., Szekely A., Palejev D., Wilson M., Gerstein M., Grigorenko E.L., Chawarska K., Pelphrey K.A., Howe J.R., Vaccarino F.M. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162(2):375- 390. DOI 10.1016/j.cell.2015.06.034
41. McFarlane H.G., Kusek G.K., Yang M., Phoenix J.L., Bolivar V.J., Crawley J.N. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 2008;7(2):152-163. DOI 10.1111/j.1601-183X.2007.00330.x
42. Minshew N.J., Williams D.L. The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch. Neurol. 2007;64(7): 945-950. DOI 10.1001/archneur.64.7.945
43. Naumenko V.S., Kulikov A.V. Quantitative assay of 5-HT1A receptor gene expression in the brain. Mol. Biol. (Mosk.). 2006;40(1):30-36. DOI 10.1134/S0026893306010067
44. Naumenko V.S., Osipova D.V., Kostina E.V., Kulikov A.V. Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain. J. Neurosci. Methods. 2008;170(2):197-203. DOI 10.1016/j.jneumeth.2008.01.008
45. Neal M., Cunningham J., Lever I., Pezet S., Malcangio M. Mechanism by which brain-derived neurotrophic factor increases dopamine release from the rabbit retina. Invest. Ophthalmol. Vis. Sci. 2003; 44(2):791-798. DOI 10.1167/iovs.02-0557
46. Nguyen H.T.N., Kato H., Masuda K., Yamaza H., Hirofuji Y., Sato H., Pham T.T.M., Takayama F., Sakai Y., Ohga S., Taguchi T., Nonaka K. Impaired neurite development associated with mitochondrial dysfunction in dopaminergic neurons differentiated from exfoliated deciduous tooth-derived pulp stem cells of children with autism spectrum disorder. Biochem. Biophys. Rep. 2018;16:24-31. DOI 10.1016/j.bbrep.2018.09.004
47. Palasz E., Wysocka A., Gasiorowska A., Chalimoniuk M., Niewiadomski W., Niewiadomska G. BDNF as a promising therapeutic agent in Parkinson’s disease. Int. J. Mol. Sci. 2020;21(3):1170. DOI 10.3390/ijms21031170
48. Pavăl D. A Dopamine hypothesis of autism spectrum disorder. Dev. Neurosci. 2017;39(5):355-360. DOI 10.1159/000478725
49. Popolo M., McCarthy D.M., Bhide P.G. Influence of dopamine on precursor cell proliferation and differentiation in the embryonic mouse telencephalon. Dev. Neurosci. 2004;26(2-4):229-244. DOI 10.1159/00008214
50. Popova N.K., Naumenko V.S. Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem. Expert Opin. Ther. Targets. 2019;23(3):227-239. DOI 10.1080/14728222.2019.1572747
51. Pourhamzeh M., Moravej F.G., Arabi M., Shahriari E., Mehrabi S., Ward R., Ahadi R., Joghataei M.T. The roles of serotonin in neuropsychiatric disorders. Cell. Mol. Neurobiol. 2022;42(6):1671-1692. DOI 10.1007/s10571-021-01064-9
52. Richards L.J., Plachez C., Ren T. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin. Genet. 2004;66(4):276-289. DOI 10.1111/j.1399-0004.2004.00354.x
53. Rochefort N.L., Garaschuk O., Milos R.I., Narushima M., Marandi N., Pichler B., Kovalchuk Y., Konnerth A. Sparsification of neuronal activity in the visual cortex at eye-opening. Proc. Natl. Acad. Sci. USA. 2009;106(35):15049-15054. DOI 10.1073/pnas.0907660106
54. Rodnyy A.Y., Kondaurova E.M., Tsybko A.S., Popova N.K., Kudlay D.A., Naumenko V.S. The brain serotonin system in autism. Rev. Neurosci. 2023;35(1):1-20. DOI 10.1515/revneuro-2023-0055
55. Sacco R., Gabriele S., Persico A.M. Head circumference and brain size in autism spectrum disorder: A systematic review and metaanalysis. Psychiatry Res. 2015;234(2):239-251. DOI 10.1016/j.pscychresns.2015.08.016
56. Satterstrom F.K., Kosmicki J.A., Wang J., Breen M.S., De Rubeis S., An J.Y., Peng M., … Guerrero E.E., Dias C.; Autism Sequencing Consortium; iPSYCH-Broad Consortium; Betancur C., Cook E.H., Gallagher L., Gill M., Sutcliffe J.S., Thurm A., Zwick M.E., Børglum A.D., State M.W., Cicek A.E., Talkowski M.E., Cutler D.J., Devlin B., Sanders S.J., Roeder K., Daly M.J., Buxbaum J.D. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020; 180(3):568-584.e23. DOI 10.1016/j.cell.2019.12.036
57. Segura M., Pedreño C., Obiols J., Taurines R., Pаmias M., Grünblatt E., Gella A. Neurotrophin blood-based gene expression and social cognition analysis in patients with autism spectrum disorder. Neurogenetics. 2015;16(2):123-131. DOI 10.1007/s10048-014-0434-9
58. Staal W.G., Langen M., van Dijk S., Mensen V.T., Durston S. DRD3 gene and striatum in autism spectrum disorder. Br. J. Psychiatry. 2015;206(5):431-432. DOI 10.1192/bjp.bp.114.148973
59. Teng H.K., Teng K.K., Lee R., Wright S., Tevar S., Almeida R.D., Kermani P., Torkin R., Chen Z.Y., Lee F.S., Kraemer R.T., Nykjaer A., Hempstead B.L. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 2005;25(22):5455-5463. DOI 10.1523/JNEUROSCI.5123-04.2005
60. Voutilainen M.H., Bäck S., Peränen J., Lindholm P., Raasmaja A., Männistö P.T., Saarma M., Tuominen R.K. Chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson’s disease. Exp. Neurol. 2011;228(1):99-108. DOI 10.1016/j.expneurol.2010.12.013
61. Wambach C.M., Patel S.N., Kahn D.A. Maternal and fetal factors that contribute to the localization of T regulatory cells during pregnancy. Am. J. Reprod. Immunol. 2014;71(5):391-400. DOI 10.1111/aji.12223
62. Wei H., Alberts I., Li X. The apoptotic perspective of autism. Int. J. Dev. Neurosci. 2014;36:13-18. DOI 10.1016/j.ijdevneu.2014.04.004
63. Yang J., Siao C.J., Nagappan G., Marinic T., Jing D., McGrath K., Chen Z.Y., Mark W., Tessarollo L., Lee F.S., Lu B., Hempstead B.L. Neuronal release of proBDNF. Nat. Neurosci. 2009;12(2):113-115. DOI 10.1038/nn.2244
64. Yoo H.J., Cho I.H., Park M., Yang S.Y., Kim S.A. Association of the catechol-o-methyltransferase gene polymorphisms with Korean autism spectrum disorders. J. Korean Med. Sci. 2013;28(9):1403- 1406. DOI 10.3346/jkms.2013.28.9.1403