Polymorphism of angiogenesis regulation factor genes (VEGF/VEGFR), and extracellular matrix remodeling genes (MMP/TIMP), and the levels of their products in extracellular tissues of patients with primary and secondary lymphedema
https://doi.org/10.18699/vjgb-24-49
Abstract
Cells of various organs and systems perform their functions and intercellular interactions not in an inert environment, but in the microenvironment of tissue fluids. Violations of the normal drainage of tissue fluids accompany lymphedema. An important mechanism of angiogenesis and vasculogenesis regulation in tissue fluids is the production and reception of vascular endothelial growth factors in combination with the regulation of matrix metalloproteinases. The aim of the work was to perform: a comparative analysis of some polymorphisms of vascular endothelial growth factor and their receptors and the genes encoding matrix metalloproteinases in two forms of lymphedema; an analysis of the relationship of these genes’ polymorphisms with the levels of vascular endothelial growth factor and matrix metalloproteinases and their inhibitors in serum and affected tissues. Polymorphism of VEGF (rs699947, rs3025039), KDR (rs10020464, rs11133360), NRP2 (rs849530, rs849563, rs16837641), matrix metalloproteinases MMP2 (rs2438650), MMP3 (rs3025058), MMP9 (rs3918242), Timp1 (rs6609533) and their combinations were analyzed by the Restriction Fragment Length Polymorphism method and TaqMan RTPCR. The serum and tissue fluid levels were determined using the ELISA test system. Changes in the frequency distribution of MMP2 genotypes in primary and MMP3 in secondary lymphedema are shown. Significant frequency differences in NRP2 genotypes were revealed by comparing primary and secondary lymphedema. Features of the distribution of complex genotypes in primary and secondary lymphedema were revealed. The correlation analysis revealed the interdependence of the concentrations of the MMP, TIMP and VEGF products and differences in the structure of the correlation matrices of patients with both forms of lymphedema. It was shown that, in primary lymphedema, genotypes associated with low MMP2 and TIMP2 in serum and tissue fluid are detected, while in secondary lymphedema, other associations of the production levels with combined genetic traits are observed.
About the Authors
V. I. KonenkovRussian Federation
Novosibirsk
V. V. Nimaev
Russian Federation
Novosibirsk
A. V. Shevchenko
Russian Federation
Novosibirsk
V. F. Prokofiev
Russian Federation
Novosibirsk
References
1. Bassiouni W., Ali M., Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021;288(24): 71627182. DOI 10.1111/febs.15701
2. CabralPacheco G.A., GarzaVeloz I., CastruitaDe la Rosa C., RamirezAcuña J.M., PerezRomero B.A., GuerreroRodriguez J.F., MartinezAvila N., MartinezFierro M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 2020;21(24):9739. DOI 10.3390/ijms21249739
3. Chen L.H., Chiu K.L., Hsia T.C., Lee Y.H., Shen T.C., Li C.H., Shen Y.C., Chang W.S., Tsai C.W., Bau D.T. Significant association of MMP2 promoter genotypes to asthma susceptibility in Taiwan. In Vivo. 2020;34(6):31813186. DOI 10.21873/invivo.12153
4. Detry B., Erpicum C., Paupert J., Blacher S., Maillard C., Bruyère F., Pendeville H., Remacle T., Lambert V., Balsat C., Ormenese S., Lamaye F., Janssens E., Moons L., Cataldo D., Kridelka F., Carmeliet P., Thiry M., Foidart J.M., Struman I., Noël A. Matrix metalloproteinase2 governs lymphatic vessel formation as an interstitial collagenase. Blood. 2012;119(21):50485056. DOI 10.1182/blood201112400267
5. Executive Committee of the International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema: 2020 Consensus Document of the International Society of Lymphology. Lymphology. 2020;53(1):319
6. Forte A.J., Boczar D., Huayllani M.T., Lu X., McLaughlin S.A. Pharmacotherapy agents in lymphedema treatment: A systematic review. Cureus. 2019;11(12):e6300. DOI 10.7759/cureus.6300
7. Gao X., Ma F., Hao H., Dai Y., Liu W., Xiao X., Gao P., Li S. Association of VEGFA polymorphisms with necrotizing enterocolitis in Chinese Han population. Pediatr. Neonatol. 2019;60(2):129134. DOI 10.1016/j.pedneo.2018.07.002
8. Gao Y., Lee Y., Almazyad A., Birsner A., Li D., Wong S., Wen A., D’Amato R., Adam R.M., Dixon J.B., Srinivasan R.S., Chen H., Bielenberg D.R. Loss of neuropilin 2 in adult lymphatic endothelium promotes lymphedema. FASEB J. 2020;34(S1):1. DOI 10.1096/fasebj.2020.34.s1.06345
9. Gordon K., Mortimer P.S., van Zanten M., Jeffery S., Ostergaard P., Mansour S. The St George’s classification algorithm of primary lymphatic anomalies. Lymphat. Res. Biol. 2021;19(1):2530. DOI 10.1089/lrb.2020.0104
10. Luo Y., Luo J., Peng H. Associations between genetic polymorphisms in the VEGFA, ACE, and SOD2 genes and susceptibility to diabetic nephropathy in the Han Chinese. Genet. Test. Mol. Biomarkers. 2019;23(9):644651. DOI 10.1089/gtmb.2018.0320
11. Miller A. Lymphedemaclinical picture and therapy. Review. Hautarzt. 2020;71(1):3238. DOI 10.1007/s0010501904523z
12. Monaghan R.M., Page D.J., Ostergaard P., Keavney B.D. The physiological and pathological functions of VEGFR3 in cardiac and lymphatic development and related diseases. Cardiovasc. Res. 2021; 117(8):18771890. DOI 10.1093/cvr/cvaa291
13. Mucka P., Levonyak N., Geretti E., Zwaans B., Li X., Adini I., Klagsbrun M., Adam R., Bielenberg D. Inflammation and lymphedema are exacerbated and prolonged by neuropilin 2 deficiency. Am. J. Pathol. 2016;186(11):28032812. DOI 10.1016/j.ajpath.2016.07.022
14. Poveshchenko A.F., Nimaev V.V., Lyubarsky M.S., Konenkov V.I. Medical and genetical aspects of lymphedema. Meditsinskaya Genetika = Medical Genetics. 2010;9(99):39 (in Russian)
15. Quirion E. Recognizing and treating upper extremity lymphedema in postmastectomy/lumpectomy patients: a guide for primary care providers. J. Am. Acad. Nurse. Pract. 2010;22(9):450459. DOI 10.1111/j.17457599.2010.00542.x
16. Rauniyar K., Jha S.K., Jeltsch M. Biology of vascular endothelial growth factor C in the morphogenesis of lymphatic vessels. Front. Bioeng. Biotechnol. 2018;6:7. DOI 10.3389/fbioe.2018.00007
17. Saik O.V., Nimaev V.V., Usmonov D.B., Demenkov P.S., Ivanisenko T.V., Lavrik I.N., Ivanisenko V.A. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med. Genomics. 2019;12(Suppl. 2):47. DOI 10.1186/s1292001904929
18. Shevchenko A.V., Prokofyev V.F., Konenkov V.I., Khapaev R.S., Nimaev V.V. Polymorphism of vascular endothelial growth factor gene (VEGF) and matrix metalloproteinase (ММР) genes in primary limb lymphedema. Meditsinskaya Immunologiya = Medical Immunology. 2020;22(3):497506. DOI 10.15789/15630625POV1913 (in Russian)
19. Stevens M., Oltean S. Modulation of receptor tyrosine kinase activity through alternative splicing of ligands and receptors in the VEGFA/ VEGFR axis. Cells 2019;8(4):288. DOI 10.3390/cells8040288
20. Vaahtomeri K., Karaman S., Mäkinen T., Alitalo K. Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev. 2017;31(16):16151634. DOI 10.1101/gad.303776.117
21. Vignes S. Lymphedema: from diagnosis to treatment. Rev. Med. Interne. 2017;38(2):97105. DOI 10.1016/j.revmed.2016.07.005
22. Watson C.J., Webb N.J.A., Bottomley M.J., Brenchley P.E.C. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: Correlation with variation in VEGF protein production. Cytokine. 2000;12(8):12321235. DOI 10.1006/cyto.2000.0692
23. Yap R.W.K., Lin M.H., Shidoji Y., Yap W.S. Association of stress, mental health, and VEGFR-2 gene polymorphisms with cardiometabolic risk in Chinese Malaysian adults. Nutrients. 2019;11(5):1140. DOI 10.3390/nu11051140
24. Zhang K., Chen X., Zhou J., Yang C., Zhang M., Chao M., Zhang L., Liang C. Association between MMP21306 C/T polymorphism and prostate cancer susceptibility: a metaanalysis based on 3906 subjects. Oncotarget. 2017;8(27):4502045029. DOI 10.18632/oncotarget.16972