1. Bartholomé J., Prakash P.T., Cobb J.N. Genomic prediction: progress and perspectives for rice improvement. In: Ahmadi N., Bartholomé J. (Eds.). Genomic Prediction of Complex Traits. Methods in Molecular Biology. V. 2467. New York: Humana, 2022;569-617. https://doi.org/10.1007/978-1-0716-2205-6_21
2. Berkner M.O., Schulthess A.W., Zhao Y., Jiang Y., Oppermann M., Reif J.C. Choosing the right tool: Leveraging of plant genetic resources in wheat (Triticum aestivum L.) benefits from selection of a suitable genomic prediction model. Theor. Appl. Genet. 2022; 135(12):4391-4407. https://doi.org/10.1007/s00122-022-04227-4
3. Bhat J.A., Ali S., Salgotra R.K., Mir Z.A., Dutta S., Jadon V., Tyagi A., Mushtaq M., Jain N., Singh P.K., Singh G.P., Prabhu K.V. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front. Genet. 2016;7:221. https://doi.org/10.3389/fgene.2016.00221
4. Bonnett D., Li Y., Crossa J., Dreisigacker S., Basnet B., Pérez-Rodrí- guez P., Alvarado G., Jannink J.L., Poland J., Sorrells M. Response to early generation genomic selection for yield in wheat. Front. Plant Sci. 2022;12:718611. https://doi.org/10.3389/fpls.2021.718611
5. Charmet G., Storlie E. Implementation of genome-wide selection in wheat. Russ. J. Genet. Appl. Res. 2012;2(4):298-303. https://doi.org/10.1134/S207905971204003X
6. Hoffstetter A., Cabrera A., Huang M., Sneller C. Optimizing training population data and validation of genomic selection for economic traits in soft winter wheat. G3 (Bethesda). 2016;6(9):2919-2928. https://doi.org/10.1534/g3.116.032532
7. Johnsson M. Genomics in animal breeding from the perspectives of matrices and molecules. Hereditas. 2023;160(1):20. https://doi.org/10.1186/s41065-023-00285-w
8. Juliana P., He X., Marza F., Islam R., Anwar B., Poland J., Shrestha S., Singh G.P., Chawade A., Joshi A.K., Singh R.P., Singh P.K. Genomic selection for wheat blast in a diversity panel, breeding panel and full-sibs panel. Front. Plant Sci. 2022;12:745379. https://doi.org/10.3389/fpls.2021.745379
9. Kriaridou C., Tsairidou S., Fraslin C., Gorjanc G., Looseley M.E., Johnston I.A., Houston R.D., Robledo D. Evaluation of low-density SNP panels and imputation for costeffective genomic selection in four aquaculture species. Front. Genet. 2023;14:1194266. https://doi.org/10.3389/fgene.2023.1194266
10. Kuznetsov V.M. The best linear unbiased forecast of the breeding value of roosters by the quality of offspring. Vestnik Rossiiskoy Akademii Sel’skokhozyaystvennykh Nauk = Vestnik of the Russian Academy of Agricultural Sciences. 1999;2:61-63 (in Russian)
11. Leonova I.N., Skolotneva E.S., Orlova E.A., Orlovskaya O.A., Salina E.A. Detection of genomic regions associated with resistance to stem rust in Russian spring wheat varieties and breeding germplasm. Int. J. Mol. Sci. 2020;21(13):4706. https://doi.org/10.3390/ijms21134706
12. Liu J., Wu B., Singh R.P., Velu G. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. J. Cereal Sci. 2019;88:57-64. https://doi.org/10.1016/j.jcs.2019.05.008
13. Lopez-Cruz M., Olson E., Rovere G., Crossa J., Dreisigacker S., Mondal S., Singh R., Campos G.L. Regularized selection indices for breeding value prediction using hyper-spectral image data. Sci. Rep. 2020;10(1):8195. https://doi.org/10.1038/s41598-020-65011-2
14. Lozada D.N., Carter A.H. Genomic selection in winter wheat breeding using a recommender approach. Genes. 2020;11(7):779. https://doi.org/10.3390/genes11070779
15. Martini J.W.R., Gao N., Cardoso D.F., Wimmer V., Erbe M., Cantet R.J., Simianer H. Genomic prediction with epistasis models: on the marker-coding-dependent performance of the extended GBLUP and properties of the categorical epistasis model (CE). BMC Bioinformatics. 2017;18(1):3. https://doi.org/10.1186/s12859-016-1439-1
16. Melucci L.M., Birchmeier A.N., Cappa E.P., Cantet R.J. Bayesian analysis of selection for greater weaning weight while maintaining birth weight in beef cattle. J. Anim. Sci. 2009;87(10):3089-3096. https://doi.org/10.2527/jas.2009-1801
17. Miller M.J., Song Q., Fallen B., Li Z. Genomic prediction of optimal cross combinations to accelerate genetic improvement of soybean (Glycine max). Front. Plant Sci. 2023;14:1171135. https://doi.org/10.3389/fpls.2023.1171135
18. Molenaar H., Boehm R., Piepho H.-P. Phenotypic selection in ornamental breeding: It’s better to have the BLUPs than to have the BLUEs. Front. Plant Sci. 2018;9:1511. https://doi.org/10.3389/fpls.2018.01511
19. Munyengwa N., Le Guen V., Bille H.N., Souza L.M., Clément-Demange A., Mournet P., Masson A., Soumahoro M., Kouassi D., Cros D. Optimizing imputation of marker data from genotypingby-sequencing (GBS) for genomic selection in non-model species: Rubber tree (Hevea brasiliensis) as a case study. Genomics. 2021; 113(2):655-668. https://doi.org/10.1016/j.ygeno.2021.01.012
20. Nyine M., Wang S., Kiani K., Jordan K., Liu S., Byrne P., Haley S., Baenziger S., Chao S., Bowden R., Akhunov E. Genotype imputation in winter wheat using firstgeneration haplotype map SNPs improves genome-wide association mapping and genomic prediction of traits. G3 (Bethesda). 2019;9(1):125-133. https://doi.org/10.1534/g3.118.200664
21. Piepho H.P., Möhring J., Melchinger A.E., Büchse A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica. 2008;161:209-228. https://doi.org/10.1007/s10681-007-9449-8
22. Plavšin I., Gunjača J., Galić V., Novoselović D. Evaluation of genomic selection methods for wheat quality traits in biparental populations indicates inclination towards parsimonious solutions. Agronomy. 2022;12(5):1126. https://doi.org/10.3390/agronomy12051126
23. Potapova N.A., Timoshchuk A.N., Tiys E.S., Vinichenko N.A., Leonova I.N., Salina E.A., Tsepilov Y.A. Multivariate genome-wide association study of concentrations of seven elements in seeds revealsfour new loci in Russian wheat lines. Plants. 2023;12(17):3019. https://doi.org/10.3390/plants12173019
24. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar P., de Bakker P.I., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and populationbased linkage analyses. Am. J. Hum. Genet. 2007;81(3):559-575. https://doi.org/10.1086/519795
25. Rabieyan E., Bihamta M.R., Moghaddam M.E., Mohammadi V., Alipour H. Genome-wide association mapping and genomic prediction of agronomical traits and breeding values in Iranian wheat under rain-fed and well-watered conditions. BMC Genomics. 2022;23(1): 831. https://doi.org/10.1186/s12864-022-08968-w
26. Sandhu K.S., Lozada D.N., Zhang Z., Pumphrey M.O., Carter A.H. Deep learning for predicting complex traits in spring wheat breeding program. Front. Plant Sci. 2021a;11:613325. https://doi.org/10.3389/fpls.2020.613325
27. Sandhu K., Patil S.S., Pumphrey M., Carter A. Multitrait machine- and deep-learning models for genomic selection using spectral information in a wheat breeding program. Plant Genome. 2021b;14(3): e20119. https://doi.org/10.1002/tpg2.20119
28. Sirsat M.S., Oblessuc P.R., Ramiro R.S. Genomic prediction of wheat grain yield using machine learning. Agriculture. 2022;12(9):1406. https://doi.org/10.3390/agriculture12091406
29. Song H., Ye S., Jiang Y., Zhang Z., Zhang Q., Ding X. Using imputation-based whole-genome sequencing data to improve the accuracy of genomic prediction for combined populations in pigs. Genet. Sel. Evol. 2019;51(1):58. https://doi.org/10.1186/s12711-019-0500-8
30. Stolpovsky Y.A., Piskunov A.K., Svishcheva G.R. Genomic selection. I. Latest trends and possible ways of development. Russ. J. Genet. 2020;56(9):1044-1054. https://doi.org/10.1134/S1022795420090148
31. Suslina Ye.N., Novikov A.A., Pavlova S.V., Bashmakova N.V., Fedin G.I., Alekseyeva S.I. Evaluation of breeding qualities of hog producers using the BLUP method. Izvestiya Timiryazevskoy Sel’skokhozyaystvennoy Akademii = Izvestiya of Timiryazev Agricultural Academy. 2019;6:150-161. https://doi.org/10.34677/0021-342x-2019-6-150-161 (in Russian)
32. Tajalifar M., Rasooli M. Importance of BLUP method in plant breeding. J. Plant Sci. Phytopathol. 2022;6(2):40-42. https://doi.org/10.29328/journal.jpsp.1001072
33. Tsai H.Y., Janss L.L., Andersen J.R., Orabi J., Jensen J.D., Jahoor A., Jensen J. Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Sci. Rep. 2020;10(1):3347. https://doi.org/10.1038/s41598-020-60203-2
34. Wang X., Xu Y., Hu Z., Xu C. Genomic selection methods for crop improvement: Current status and prospects. Crop J. 2018;6(4):330- 340. https://doi.org/10.1016/j.cj.2018.03.001
35. Yang J., Lee S.H., Goddard M.E., Visscher P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011;88(1): 76-82. https://doi.org/10.1016/j.ajhg.2010.11.011
36. Zhao Y., Mette M.F., Gowda M., Longin C.F., Reif J.C. Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity. 2014;112(6):638-645. https://doi.org/10.1038/hdy.2014.1
37. Zhumanov K.Z., Karymsakov T.N., Kineev M.A., Baimukanov A.D. Development and optimization of the equations of the mixed BLUP model for the evaluation of the breed value of bulls-producers of the golstin black-motioned breed of the Republic of Kazakhstan. Agrarnaya Nauka = Agrarian Science. 2021;2:33-36. https://doi.org/10.32634/0869-8155-2021-345-2-33-36 (in Russian)