Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Гипотеза взаимосвязи эпигенетических факторов с транспозонами в формировании памяти

https://doi.org/10.18699/vjgb-24-54

Аннотация

В обзорной статье описана гипотеза, согласно которой драйверами эпигенетической регуляции в формировании памяти являются мобильные генетические элементы, влияющие на экспрессию специфических генов в головном мозге. В подтверждение приведены результаты научных исследований о закономерной активации транспозонов в нейрональных стволовых клетках при дифференцировке нейронов. Данные процессы происходят в зоне нейрогенеза – зубчатой извилине гиппокампа, где определяются наибольшая активность мобильных генетических элементов и их инсерции в локусы вблизи генов, экспрессируемых нейронами с их активацией. В экспериментах по изменению активности ацетилтрансферазы гистонов, ингибированию ДНК-метилтрансферазы и обратной транскриптазы было показано вовлечение эпигенетических факторов и ретроэлементов в механизмы формирования памяти. В то же время в ряде работ на разных животных продемонстрировано сохранение долговременной памяти без участия синаптической пластичности. Полученные данные позволяют предположить, что транспозоны, являющиеся высокочувствительными сенсорами генома к различным средовым и внутренним воздействиям, формируют память на уровне ядерного кодирования. Это отражается в изменении синаптической пластичности, чем можно объяснить сохранение долговременной памяти после устранения синаптических связей у животных. Подтверждением служат факты происхождения от мобильных генетических элементов белков, непосредственно участвующих в формировании памяти, в том числе в передаче генетической информации через синапсы между нейронами (белок Arc). Транспозоны – источники длинных некодирующих РНК и микроРНК, роль которых в консолидации памяти описана. Патологическая активация мобильных генетических элементов является вероятной причиной нейродегенеративных болезней с нарушением памяти. Анализ научной литературы позволил нам обнаружить данные об изменениях экспрессии 40 микроРНК, произошедших от транспозонов, при болезни Альцгеймера. Для 24 из этих микроРНК описаны механизмы регуляции генов, участвующих в функционировании головного мозга. Сделано предположение, что установленные нами микроРНК могли бы стать потенциальными инструментами для регуляции активности транспозонов в головном мозге с целью улучшения памяти.

Об авторе

Р. Н. Мустафин
Башкирский государственный медицинский университет
Россия

Уфа



Список литературы

1. Arendt T., Ueberham U., Janitz M. Non-coding transcriptome in brain aging. Aging. 2017;9(9):1943-1944. DOI 10.18632/aging.101290

2. Ashley J., Cody B., Lucia D., Fradkin L.G., Budnik V., Thomson T. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell. 2018;172(1-2):262-274. DOI 10.1016/j.cell.2017.12.022

3. Bachiller S., Del-Pozo-Martín Y., Carrion A.M. L1 retrotransposition alters the hippocampal genomic landscape enabling memory formation. Brain Behav. Immun. 2017;64:65-70. DOI 10.1016/j.bbi.2016.12.018

4. Baek S.J., Ban H.J., Park S.M., Lee B., Choi Y., Baek Y., Lee S., Cha S. Circulating microRNAs as potential diagnostic biomarkers for poor sleep quality. Nat. Sci. Sleep. 2021;13:1001-1012. DOI 10.2147/NSS.S311541

5. Baillie J.K., Barnett M.W., Upton K.R., Gerhardt D.J., Richmond T.A., De Sapio F., Brennan P.M., Rizzu P., Smith S., Fell M., Talbot R.T., Gustincich S., Freeman T.C., Mattick J.S., Hume D.A., Heutink P., Carninci P., Jeddeloh J.A., Faulkner G.J. Somatic retrotransposition alters the genetic landscape of the human brain. Nature. 2011; 479(7374):534-537. DOI 10.1038/nature10531

6. Barak B., Shvarts-Serebro I., Modai S., Gilam A., Okun E., Michaelson D.M., Mattson M.P., Shomron N., Ashery U. Opposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNA in mouse models. Transl. Psychiatry. 2013;3(9):e304. DOI 10.1038/tp.2013.77

7. Barros-Viegas A.T., Carmona V., Ferreiro E., Guedes J., Cardoso A.M., Cunha P., de Almeida L.P., de Oliveira C.R., de Magalhaes J.P., Peca J., Cardoso A.L. miRNA-31 improves cognition and abolishes amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease. Mol. Ther. Nucleic. Acids. 2020;19: 1219-1236. DOI 10.1016/j.omtn.2020.01.010

8. Bersten D.C., Wright J.A., McCarthy P.J., Whitelaw M.L. Regulation of the neuronal transcription factor NPAS4 by REST and microRNAs. Biochim. Biophys. Acta. 2014;1839(1):13-24. DOI 10.1016/j.bbagrm.2013.11.004

9. Boese A.S., Saba R., Campbell K., Majer A., Medina S., Burton L., Booth T.F., Chong P., Westmacott G., Dutta S.M., Saba J.A., Booth S.A. MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol. Cell. Neurosci. 2016;71:13-24. DOI 10.1016/j.mcn.2015.12.001

10. Bottero V., Potashkin J.A. Meta-analysis of gene expression changes in the blood of patients with mild cognitive impairment and Alzheimer’s disease dementia. Int. J. Mol. Sci. 2019;20(21):5403. DOI 10.3390/ijms20215403

11. Butler A.A., Johnston D.R., Kaur S., Lubin F.D. Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related me mory impairment. Sci. Signal. 2019;12(588):eaaw9277. DOI 10.1126/scisignal.aaw9277

12. Buurstede J.C., van Weert L.T.C.M., Coucci P., Gentenaar M., Viho E.M.G., Koorneef L.L., Schoonderwoerd R.A., Lanooij S.D., Moustakas I., Balog J., Mei H., Kielbasa S.M., Campolongo P., Roozendaal B., Meijer O.C. Hippocalmpal glucocorticoid target genes associated with enhancement of memory consolidation. Eur. J. Neurosci. 2022;55(9-10):2666-2683. DOI 10.1111/ejn.15226

13. Cai Y., Sun Z., Jia H., Luo H., Ye X., Wu Q., Xiong Y., Zhang W., Wan J. Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p. Front. Mol. Neurosci. 2017;10:27. DOI 10.3389/fnmol.2017.00027

14. Campillos M., Doerks T., Shah P.K., Bork P. Computational characterization of multiple Gag-like human proteins. Trends Genet. 2006; 22(11):585-589. DOI 10.1016/j.tig.2006.09.006

15. Capitano F., Camon J., Licursi V., Ferretti V., Maggi L., Scianni M., Vecchio G.D., Rinaldi A., Mannironi C., Limatola C., Presutti C., Mele A. MicroRNA-335-5p modulates spatial memory and hippocampal synaptic plasticity. Neurobiol. Learn. Mem. 2017;139:63-68. DOI 10.1016/j.nlm.2016.12.019

16. Chalertpet K., Pin-On P., Aporntewan C., Patchsung M., Ingrungruanglert P., Israsena N., Mutirangura A. Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells. Front. Genet. 2019;10:645. DOI 10.3389/fgene.2019.00645

17. Chen S., Cai D., Pearce K., Sun P.Y., Roberts A.C., Glanzman D.L. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. eLife. 2014;3:e03896. DOI 10.7554/eLife.03896

18. Chen W., Qin C. General hallmarks of microRNAs in brain evolution and development. RNA Biol. 2015;12(7):701-708. DOI 10.1080/15476286.2015.1048954

19. Chesnokova E., Beletskiy A., Kolosov P. The role of transposable elements of the human genome in neuronal function and pathology. Int. J. Mol. Sci. 2022;23(10):5847. DOI 10.3390/ijms23105847

20. Chou M.Y., Hu M.C., Chen P.Y., Hsu C.L., Lin T.Y., Tan M.J., Lee C.Y., Kuo M.F., Huang P.H., Wu V.C., Yang S.H., Fan P.C., Huang H.Y., Akbarian S., Loo T.H., Stewart C.L., Huang H.P., Gau S.S., Huang H.S. RTL1/PEG11 imprinted in human and mouse brain mediates anxiety-like and social behaviors and regulates neuronal excitability in the locus coeruleus. Hum. Mol. Genet. 2022;31(18): 3161-3180. DOI 10.1093/hmg/ddac110

21. Cobeta I.M., Stadler C.B., Li J., Yu P., Thor S., Benito-Sipos J. Specification of Drosophila neuropeptidergic neurons by the splicing component brr2. PLoS Genet. 2018;14(8):e1007496. DOI 10.1371/journal.pgen.1007496

22. Cohen J.E., Lee P.R., Fields R.D. Systematic identification of 3′-UTR regulatory elements in activity-dependent mRNA stability in hippocampal neurons. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014; 369(1652):20130509. DOI 10.1098/rstb.2013.0509

23. Cosín-Tomás M., Antonell A., Lladó A., Alcolea D., Fortea J., Ezquerra M., Lleó A., Martí M.J., Pallàs M., Sanchez-Valle R., Molinuevo J.L., Sanfeliu C., Kaliman P. Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimer’s disease: potential and limitations. Mol. Neurobiol. 2017;54(7):5550-5562. DOI 10.1007/s12035-016-0088-8

24. Coufal N.G., Garcia-Perez J.L., Peng G.E., Yeo G.W., Mu Y., Lovci M.T., Morell M., O’Shea K.S., Moran J.V., Gage F.H. L1 retro-transposition in human neural progenitor cells. Nature. 2009; 460(7259):1127-1131. DOI 10.1038/nature08248

25. Cui X., Zhang R., Yang Y., Wu E., Tang Y., Zhao Z., Li C., Yang L., Teng X., Ye Y., Cui Y., Xu F., Su Z., Wang D., Zhang D., Yang Y., Sun J., Luo J., Zhang S., Chen R., Xi J.J. Identification and characterization of long non-coding RNA Carip in modulating spatial learning and memory. Cell. Rep. 2022;38(8):110398. DOI 10.1016/j.celrep.2022.110398

26. Dakterzada F., Benitez I.D., Targa A., Llado A., Torres G., Romero L., de Gonzalo-Calvo D., Moncusi-Moix A., Tort-Merino A., Huerto R., Sánchez-de-la-Torre M., Barbé F., Piñol-Ripoll G. Reduced levels of miR-342-5p in plasma are associated with worse cognitive evolution in patients with mild Alzheimer’s disease. Front. Aging Neurosci. 2021;13:705989. DOI 10.3389/fnagi.2021.705989

27. Di Palo A., Siniscalchi C., Crescente G., De Leo I., Fiorentino A., Pacifico S., Russo A., Potenza N. Effect of cannabidiolic acid, N-transcaffeoyltyramine and cannabisin B from hemp seeds on microRNA expression in human neural cells. Curr. Issues Mol. Biol. 2022; 44(10):5106-5116. DOI 10.339/cimb44100347

28. Dlakić M., Mushegian A. Prp8, the pivotal protein of the spliseosomal catalytic center, evolved from a retroelement – encoded reverse transcriptase. RNA. 2011;17(5):799-808. DOI 10.1261/rna.2396011

29. Dong Z., Gu H., Guo Q., Liang S., Xue J., Yao F., Liu X., Li F., Liu H., Sun L., Zhao K. Profiling of serum exosome miRNA reveals the potential of a miRNA panel as diagnostic biomarker for Alzheimer’s disease. Mol Neurobiol. 2021;58(7):3084-3094. DOI 10.1007/s12035-021-02323-y

30. Dong Z., Gu H., Guo Q., Liu X., Li F., Liu H., Sun L., Ma H., Zhao K. Circulating small extracellular vesicle-derived miR-342-5p ameliorates beta-amyloid formation via targeting beta-site APP cleaving enzyme 1 in Alzheimer’s disease. Cells. 2022;11(23):3830. DOI 10.3390/cells11233830

31. El Hajjar J., Chatoo W., Hanna R., Nkanza P., Tetrault N., Tse Y.C., Wong T.P., Abdouh M., Bernier G. Heterochromatic genome instability and neurodegeneration sharing similarities with Alzheimer’s disease in old Bmi1+/− mice. Sci. Rep. 2019;9(1):594. DOI 10.1038/s41598-018-37444-3

32. Espadas I., Wingfield J., Grinman E., Ghosh I., Chanda K., Nakahata Y., Bauer K., Raveendra B., Kiebler M., Yasuda R., Rangaraju V., Puthanveettil S. SLAMR, a synaptically targeted lncRNA, facilitates the consolidation of contextual fear memory. Res. Sq. [Preprint]. 2023;rs.3.rs-2489387. DOI 10.21203/rs.3.rs-2489387/v1

33. Eysert F., Coulon A., Boscher E., Vreulx A.C., Flaig A., Mendes T., Hughes S., Grenier-Boley B., Hanoulle X., Demiautte F., Bauer C., Marttinen M., Takalo M., Amouyel P., Desai S., Pike I., Hiltunen M., Chécler F., Farinelli M., Delay C., Malmanche N., Hébert S.S., Dumont J., Kilinc D., Lambert J., Chapuis J. Alzheimer’s genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner. Mol. Psychiatry. 2021; 26(10):5592-5607. DOI 10.1038/s41380-020-00926-w

34. Grinkevich L.N. The role of microRNAs in learning and long-term memory. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(8):885-896. DOI 10.18699/VJ20.687 (in Russian)

35. Grundman J., Spencer B., Sarsoza F., Rissman R.A. Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression. PLoS One. 2021;16(9):e0251611. DOI 10.1371/journal.pone.0251611

36. Gu Q.H., Yu D., Hu Z., Liu X., Yang Y., Luo Y., Zhu J., Li Z. miR-26a and miR-384-35p are required for LTP maintenance and spine enlargement. Nat. Commun. 2015;6:6789. DOI 10.1038/ncomms7789

37. Guo R., Fan G., Zhang J., Wu C., Du Y., Ye H., Li Z., Wang L., Zhang Z., Zhang L., Zhao Y., Lu Z. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J. Alzheimers Dis. 2017;60(4):1365-1377. DOI 10.3233/JAD-170343

38. Hajjri S.N., Sadigh-Eteghad S., Mehrpour M., Moradi F., Shanehbandi D., Mehdizadeh M. Beta-amyloid-dependent mirnas as circulating biomarkers in Alzheimer’s disease: a preliminary report. J. Mol. Neurosci. 2020;70(6):871-877. DOI 10.1007/s12031-020-01511-0

39. Hanna R., Flamier A., Barabino A., Bernier G. G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer’s disease. Nat. Commun. 2021; 12(1):1828. DOI 10.1038/s41467-021-22129-9

40. Hegde A.N., Smith S.G. Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory. Learn. Mem. 2019;26(9):307-317. DOI 10.1101/lm.048769.118

41. Henriques A.D., Machado-Silva W., Leite R.E.P., Suemoto C.K., Leite K.R.M., Srougi M., Pereira A.C., Jacob-Filho W., Nóbrega O.T.; Brazilian Aging Brain Study Group. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimer’s disease. Mech. Ageing Dev. 2020;191:111352. DOI 10.1016/j.mad.2020.111352

42. Hong H., Li Y., Su B. Identification of circulating miR-125b as a potential biomarker of Alzheimer’s disease in APP/PS1 transgenic mouse. J. Alzheimers Dis. 2017;59(4):1449-1458. DOI 10.3233/JAD-170156

43. Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development. Dev. Cell. 2018;46(20):132-134. DOI 10.1016/j.devcel.2018.06.022

44. Hu L., Zhang R., Yuan Q., Gao Y., Yang M.Q., Zhang C., Huang J., Sun Y., Yang W., Yang J.Y., Min Z.L., Cheng J., Deng Y., Hu X. The emerging role of microRNA-4487/6845-3p in Alzherimer’s disease pathologies is induced by Aβ25-35 triggered in SH-SY5Y cell. BMC Syst. Biol. 2018;12(Suppl. 7):119. DOI 10.1186/s12918-018-0633-3

45. Huang W., Li S., Hu Y.M., Yu H., Luo F., Zhang Q., Zhu F. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr. Bull. 2011;37(5):988-1000. DOI 10.1093/schbul/sbp166

46. Jarome T.J., Lubin F.D. Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol. Learn. Mem. 2014;115:116-127. DOI 10.1016/j.nlm.2014.08.002

47. Johnson R., Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20(7): 959-976. DOI 10.1261/rna.044560.114

48. Ju M., Yang L., Zhu J., Chen Z., Zhang M., Yu J., Tian Z. MiR-664-2 impacts pubertal development in a precocious-puberty rat model through targeting the NMDA receptor-1†. Biol. Reprod. 2019; 100(6):1536-1548. DOI 10.1093/biolre/ioz044

49. Kaltschmidt B., Kaltschmidt C. NF-KappaB in lont-term memory and structural plasticity in the adult mammalian brain. Front. Mol. Neurosci. 2015;8:69. DOI 10.3389/fnmol.2015.00069

50. Kaneko-Ishino T., Ishino F. Evolution of brain functions in mammals and LTR retrotransposon-derived genes. Uirusu. 2016;66(1):11-20. DOI 10.2222/jsv.66.11

51. Kopera H.C., Moldovan J.B., Morrish T.A., Garcia-Perez J.L., Moran J.V. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase. Proc. Natl. Acad. Sci. USA. 2011;108(51):20345-20350. DOI 10.1073/pnas.1100275108

52. Kurnosov A.A., Ustyugova S.V., Nazarov V.I., Minervina A.A., Komkov A.Y., Shugay M., Pogorelyy M.V., Khodosevich K.V., Mamedov I.Z., Lebedev Y.B. The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS One. 2015;10(2): e0117854. DOI 10.1371/journal.pone.0117854

53. Lapp H.E., Hunter R.G. The dynamic genome: transposons and environmental adaptation in the nervous system. Epigenomics. 2016; 8(2):237-249. DOI 10.2217/epi.15.107

54. Lau P., Bossers K., Janky R., Salta E., Frigerio C.S., Barbash S., Rothman R., Sierksma A.S., Thathiah A., Greenberg D., Papadopoulou A.S., Achsel T., Ayoubi T., Soreq H., Verhaagen J., Swaab D.F., Aerts S., Strooper B.D. Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol. Med. 2013; 5(10):1613-1634. DOI 10.1002/emmm.201201974

55. Leal G., Comprido D., Duarte C.B. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology. 2014;76(Pt. C): 639-656. DOI 10.1016/j.neuropharm.2013.04.005

56. Levine R.B. Changes in neuronal circuits during insect metamorphosis. J. Exp. Biol. 1984;112:27-44. DOI 10.1242/jeb.112.1.27

57. Li L., Miao M., Chen J., Liu Z., Li W., Qiu Y., Xu S., Wang Q. Role of Ten eleven translocation-2 (Tet2) in modulating neuronal morphology and cognition in a mouse model of Alzheimer’s disease. J. Neurochem. 2021;157(4):993-1012. DOI 10.1111/jnc.15234

58. Linker S.B., Randolph-Moore L., Kottilil K., Qiu F., Jaeger B.N., Barron J., Gage F.H. Identification of bona fide B2 SINE retrotransposon transcription through single-nucleus RNA-seq of the mouse hippocampus. Genome Res. 2020;30(11):1643-1654. DOI 10.1101/gr.262196.120

59. Lipsky R.H. Epigenetic mechanisms regulating learning and long-term memory. Int. J. Dev. Neurosci. 2013;31(6):353-358. DOI 10.1016/j.ijdevneu.2012.10.110

60. Liu Q.Y., Chang M.N.V., Lei J.X., Koukiekolo R., Smith B., Zhang D., Ghribi O. Identification of microRNAs involved in Alzheimer’s progression using a rabbit model of the disease. Am. J. Neurodegener. Dis. 2014;3(1):33-44

61. Lu L., Dai W., Zhu X., Ma T. Analysis of serum miRNAs in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2021;36: 15333175211021712. DOI 10.1177/15333175211021712

62. Lu X., Sachs F., Ramsay L., Jacques P.É., Göke J., Bourque G., Ng H.H. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 2014; 21(4):423-425. DOI 10.1038/nsmb.2799

63. Lugli G., Cohen A.M., Bennett D.A., Shah R.C., Fields C.J., Hernandez A.G., Smalheiser N.R. Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS One. 2015;10(10):e0139233. DOI 10.1371/journal.pone.0139233

64. Maag J.L.V., Panja D., Sporild I., Patil S., Koczorowski D.C., Bramham C.R., Dinger M.E., Wibrand K. Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity. Front. Neurosci. 2015;9:351. DOI 10.3389/fnins.2015.00351

65. Mager D.L., Stoye J.P. Mammalian endogenous retroviruses. Micro-biol. Spectr. 2014;3(1):MDNA3-0009-2014. DOI 10.1128/microbiolspec. MDNA3-0009-2014

66. Mainigi M., Rosenzweig J.M., Lei J., Mensah V., Thomaier L., Talbot Jr. C.C., Olalere D., Ord T., Rozzah R., Johnston M., Burd I. Peri-implantation hormonal milieu: elucidating mechanisms of adverse neurodevelopmental outcomes. Reprod. Sci. 2016;23(6):785-794. DOI 10.1177/1933719115618280

67. Majumder P., Chanda K., Das D., Singh B.K., Charkrabarti P., Jana N.R., Mukhopadhyay D. A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer’s disease and type 2 diabetes. Biochem. J. 2021;478(17):3297-3317. DOI 10.1042/BCJ20210175

68. Michely J., Kraft S., Muller U. miR-12 and miR-124 contribute to defined early phases of long-lasting and transient memory. Sci. Rep. 2017;7(1):7910. DOI 10.1038/s41598-017-08486-w

69. Miller C.A., Gavin C.F., White J.A., Parrish R.R., Honasoge A., Yancey C.R., Rivera I.M., Rubio M.D., Rumbaugh G., Sweatt J.D. Cor tical DNA methylation maintains remote memory. Nat. Neurosci. 2010;13(6):664-666. DOI 10.1038/nn.2560

70. Munin V.A., Olenko E.S. Theories of memory formation mechanisms. Psykhosomaticheskiye i Integrativnye Issledovaniya = Psychosomatic and Integrative Research. 2022;8(2):3 (in Russian)

71. Muotri A.R., Chu V.T., Marchetto M.C., Deng W., Moran J.V., Gage F.H. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature. 2005;435(7044):903-910. DOI 10.1038/nature03663

72. Muotri A.R., Marchetto M.C., Coufal N.G., Oefner R., Yeo G., Nakashima K., Gage F.H. L1 retrotransposition in neurons is modulated by MeCP2. Nature. 2010;468(7322):443-446. DOI 10.1038/nature09544

73. Mustafin R.N., Khusnutdinova E.K. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(6):742-749. DOI 10.18699/VJ17.30-o (in Russian)

74. Mustafin R.N., Khusnutdinova E.K. Epigenetic hypothesis of the role of peptides in aging. Adv. Gerontol. 2018;8(3):200-209. DOI 10.1134/S2079057018030128

75. Mustafin R.N., Khusnutdinova E.K. The role of transposons in epigenetic regulation of ontogenesis. Russ. J. Dev. Biol. 2018;49(2):61-78. DOI 10.1134/S1062360418020066

76. Mustafin R.N., Khusnutdinova E.K. The role of transposable elements in the ecological morphogenesis under influence of stress. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(4):380-389. DOI 10.18699/VJ19.506 (in Russian)

77. Noyes N.C., Phan A., Davis R.L. Memory suppressor genes: Modulating acquisition, consolidation, and forgetting. Neuron. 2021; 109(20):3211-3227. DOI 10.1016/j.neuron.2021.08.001

78. Ortega-de San Luis C., Ryan T.J. Understanding the physical basis of memory: Molecular mechanisms of the engram. J. Biol. Chem. 2022;298(5):101866. DOI 10.1016/j.jbc.2022.101866

79. Pan W., Hu Y., Wang L., Jing L. Circ_0003611 acts as a miR-885-5p sponge to aggravate the amyloid-β-induced neuronal injury in Alzheimer’s disease. Metab. Brain Dis. 2022;37(4):961-971. DOI 10.1007/s11011-022-00912-x

80. Pandya N.J., Wang C., Costa V., Lopatta P., Meier S., Zampeta F.I., Punt A.M., Mientjes E., Grossen P., Distler T., Tzouros M., Martí Y., Banfai B., Patsch C., Rasmussen S., Hoener M., Berrera M., Kremer T., Dunkley T., Ebeling M., Distel B., Elgersma Y., Jagasia R. Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology. Cell Rep. Med. 2021;2(8):100360. DOI 10.1016/j.xcrm.2021.100360

81. Parsons M.J., Grimm C., Paya-Cano J.L., Fernandes C., Liu L., Phi-lip V.M., Chesler E.J., Nietfeld W., Lehrach H., Schalkwyk L.C. Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains. BMC Genomics. 2012;13:476. DOI 10.1186/1471-2164-13-476

82. Pastuzyn E.D., Day C.E., Kearns R.B., Kyrke-Smith M., Taibi A.V., McCormick J., Yoder N., Belnap D.M., Erlendsson S., Morado D.R., Briggs J.A.G., Feschotte C., Shepherd J.D. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell. 2018;172(1-2):275-288.e18. DOI 10.1016/j.cell.2017.12.024

83. Patel A.A., Ganepola G.A.P., Rutledge J.R., Chang D.H. The potential role of dysregulated miRNAs in Alzheimer’s disease pathogenesis and progression. J. Alzheimers Dis. 2019;67(4):1123-1145. DOI 10.3233/JAD-181078

84. Perrat P.N., DasGupta S., Wang J., Theurkauf W., Weng Z., Rosbash M., Waddell S. Transposon-driven genomic heterogeneity in the Drosophila brain. Science. 2013;340(6128):91-95. DOI 10.1126/science.1231965

85. Pisopo P., Albani D., Castellano A.E., Forloni G., Confaloni A. Frontotemporal lobar degeneration and microRNAs. Front. Aging Neurosci. 2016;8:17

86. Puig-Parnau I., Garcia-Brito S., Faghihi N., Gubern C., Aldavert-Vera L., Segura-Torres P., Huguet G., Kadar E. Intracranial self-stimulation modulates levels of SIRT1 protein and neural plasticity-related microRNAs. Mol. Neurobiol. 2020;57(6):2551-2562. DOI 10.1007/s12035-020-01901-w

87. Qin Z., Han X., Ran J., Guo S., Lv L. Exercise-mediated alteration of miR-192-5p is associated with cognitive improvement in Alzheimer’s disease. Neuroimmunomodulation. 2022;29(1):36-43. DOI 10.1159/000516928

88. Raheja R., Regev K., Healy B.C., Mazzola M.A., Beynon V., Von Glehn F., Paul A., Diaz-Cruz C., Gholipour T., Glanz B.I., Kivisakk P., Chitnis T., Weiner H.L., Berry J.D., Gandhi R. Correlating serum microRNAs and clinical parameters in amyotrophic lateral sclerosis. Muscle Nerve. 2018;58(2):261-269. DOI 10.1002/mus.26106

89. Rahman M.R., Islam T., Zaman T., Shahjaman M., Karim M.R., Huq F., Quinn J.M.W., Holsinger R.M.D., Gov E., Moni M.A. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: Insights from a systems biomedicine perspective. Genomics. 2020;112(2):1290-1299. DOI 10.1016/j.ygeno.2019.07.018

90. Ramirez P., Zuniga G., Sun W., Beckmann A., Ochoa E., DeVos S.L., Hyman B., Chiu G., Roy E.R., Cao W., Orr M., Buggia-Prevot V., Ray W.J., Frost B. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Prog. Neurobiol. 2022;208:102181. DOI 10.1016/j.pneurobio.2021.102181

91. Ramsay L., Marchetto M.C., Caron M., Chen S.H., Busche S., Kwan T., Pastinen T., Gage F.H., Bourque G. Conserved expression of transposon-derived non-coding transcripts in primate stem cells. BMC Genomics. 2017;18(1):214-226. DOI 10.1186/s12864-017-3568-y

92. Rodic N., Burns K.H. Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms. PLoS Genetics. 2013;9(3): e1003402. DOI 10.1371/journal.pgen.1003402

93. Ryan B., Logan B.J., Abraham W.C., Williams J.M. MicroRNAs, miR-23a-3p and miR-151-3p, are regulated in dentate gyrus neuropil following induction of long-term potentiation in vivo. PLoS One. 2017;12(1):e0170407. DOI 10.1371/journal.pone.0170407

94. Ryan T.J., Roy D.S., Pignatelli M., Arons A., Tonegawa S. Memory. Engram cells retain memory under retrograde amnesia. Science. 2015;348(6238):1007-1013. DOI 10.1126/science.aaa5542

95. Samaddar S., Banejee S. Far from the nuclear crowd: Cytoplasmic lncRNA and their implications in synaptic plasticity and memory. Neurobiol. Learn. Mem. 2021;185:107522. DOI 10.1016/j.nlm.2021.107522

96. Samadian M., Gholipour M., Hajiesmaeili M., Taheri M., Ghafouri-Fard S. The eminent role of microRNAs in the pathogenesis of Alzheimer’s disease. Front. Aging Neurosci. 2021;13:641080. DOI 10.3389/fnagi.2021.641080

97. Satoh J., Kino Y., Niida S. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimer’s disease from public data. Biomark. Insight. 2015;10:21-31. DOI 10.4137/BMI.S25132

98. Schipper H.M., Maes O.C., Chertkow H.M., Wang E. MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul. Syst. Bio. 2007;1:263-274. DOI 10.4137/grsb.s361

99. Schonrock N., Ke Y.D., Humphreys D., Staufenbiel M., Ittner L.M., Preiss T., Götz J. Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-β. PLoS One. 2010;5(6):e11070. DOI 10.1371/journal.pone.0011070

100. Shomrat T., Levin M. An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration. J. Exp. Biol. 2013;216(Pt. 20):3799-3810. DOI 10.1242/jeb.087809

101. Sierksma A., Lu A., Salta E., Vanden Eynden E., Callaerts-Vegh Z., D’Hooge R., Blum D., Buée L., Fiers M., De Stooper B. Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology. Mol. Neurodegener. 2018;13(1):54. DOI 10.1186/s13024-018-0285-1

102. Singer T., McConnell M.J., Marchetto M.C.N., Coufal N.G., Gage F.H. LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes. Trends Neurosci. 2010;33(8):345-354. DOI 10.1016/j.tins.2010.04.001

103. Song S., Pan Y., Li H., Zhen H. MiR-1202 exerts neuroprotective effects on OGD/R induced inflammation in HM cell by negatively regulating Rab1a involved in TLR4/NF-κB signaling pathway. Neurochem. Res. 2020;45(5):1120-1129. DOI 10.1007/s11064-020-02991-7

104. Sun C., Liu J., Duan F., Cong L., Qi X. The role of the microRNA regulatory network in Alzheimer’s disease: a bioinformatics analysis. Arch. Med. Sci. 2021;18(1):206-222. DOI 10.5114/aoms/80619

105. Sun W., Samimi H., Gamez M., Zare H., Frost B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 2018;21(8):1038-1048. DOI 10.1038/s41593-018-0194-1

106. Sun X., Deng Y., Ge P., Peng Q., Soufiany I., Zhu L., Duan R. Diminazene ameliorates neuroinflammation by suppression of astrocytic miRNA-224-5p/NLRP3 axis in Alzheimer’s disease model. J. Inflamm. Res. 2023;16:1639-1652. DOI 10.2147/JIR.S401385

107. Tan L., Yu J.T., Tan M.S., Liu Q.Y., Wang H.F., Zhang W., Jiang T., Tan L. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J. Alzheimers Dis. 2014;40(4):1017-1027. DOI 10.3233/JAD-132144

108. Tan X., Luo Y., Pi D., Xia L., Li Z., Tu Q. MiR-340 reduces the accumulation of amyloid-β through targeting BACE1 (β-site amyloid precursor protein cleaving enzyme 1) in Alzheimer’s disease. Curr. Neurovasc. Res. 2020;17(1):86-92. DOI 10.2174/1567202617666200117103931

109. Tan Y., Yu D., Busto G.U., Wilson C., Davis R.L. Wnt signaling is required for long-term memory formation. Cell Rep. 2013;4(6):1082-1089. DOI 10.1016/j.celrep.2013.08.007

110. Tang C.Z., Yang J.T., Liu Q.H., Wang Y.R., Wang W.S. Up-regulated miR-192-5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2-mediated TGF-β1 signaling pathway. FASEB J. 2019;33(1):606-618. DOI 10.1096/fj.201800210RR

111. Upton K., Gerhardt D.J., Jesuadian J.S., Richardson S.R., Sanchez-Luque F.J., Bodea G.O., Ewing A.D., Salvador-Palomeque C., van der Knaap M.S., Brennan P.M., Vanderver A., Faulkner G.J. Ubiquitous L1 mosaicism in hippocampal neurons. Cell. 2015;161(2):228-239. DOI 10.1016/j.cell.2015.03.026

112. Van Meter M., Kashyap M., Rezazadeh S., Geneva A.J., Morello T.D., Seluanov A., Gorbunova V. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 2014;5:5011. DOI 10.1038/ncomms6011

113. Vatsa N., Kumar V., Singh B.K., Kumar S.S., Sharma A., Jana N.R. Down-regulation of miRNA-708 promotes aberrant calcium signaling by targeting neuronatin in a mouse model of angelman syndrome. Front. Mol. Neurosci. 2019;12:35. DOI 10.3389/fnmol.2019.00035

114. Wang T., Zhao W., Liu Y., Yang D., He G., Wang Z. MicroRNA-511-3p regulates Aβ1-40 induced decreased cell viability and serves as a candidate biomarker in Alzheimer’s disease. Exp. Gerontol. 2023;178: 112195. DOI 10.1016/j.exger.2023.112195

115. Wei G., Qin S., Li W., Chen L., Ma F. MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016;13(6):1155-1160. DOI 10.1109/TCBB.2015.2511767

116. Weng H.R., Taing K., Chen L., Penney A. EZH2 methyltransferase regulates neuroinflammation and neuropathic pain. Cells. 2023;12(7): 1058. DOI 10.3390/cells12071058

117. Wibrand K., Pai B., Siripornmongcolchai T., Bittins M., Berentsen B., Ofte M.L., Weigel A., Skaftnesmo K.O., Bramham C.R. MicroRNA regulation of the synaptic plasticity-related gene Arc. PLoS One. 2012;7(7):e41688. DOI 10.1371/journal.pone.0041688

118. Wolf G., Yang P., Füchtbauer A.C., Füchtbauer E.M., Silva A.M., Park C., Wu W., Nielsen A.L., Pedersen F.S., Macfarlan T.S. The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes Dev. 2015;29(5):538-554. DOI 10.1101/gad.252767.114

119. Xu X.F., Wang Y.C., Zong L., Wang X.L. miR-151-5p modulates APH1a expression to participate in contextual fear memory formation. RNA Biol. 2019;16(3):282-294. DOI 10.1080/15476286.2019.1572435

120. Xu X., Gu D., Xu B., Yang C., Wang L. Circular RNA circ_0005835 promotes neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-ep in Alzheimer’s disease. Environ. Sci. Pollut. Res. Int. 2022;29(24):35934-35943. DOI 10.1007/s11356-021-17478-3

121. Yaqub A., Mens M.M.J., Klap J.M., Weverling G.J., Klaser P., Brakenhoff J.P.J., Roshchupkin G.V., Ikram M.K., Ghanbari M., Ikram M.A. Genome-wide profiling of circulatory microRNAs associated with cognition and dementia. Alzheimers Dement. 2023;19(4):1194-1203. DOI 10.1002/alz.12752

122. Yuen S.C., Liang X., Zhu H., Jia Y., Leung S. Prediction of differentially expressed microRNAs in blood as potential biomarkers for Alzheimer’s disease by meta-analysis and adaptive boosting ensemble learning. Alzheimers Res. Ther. 2021;13(1):126. DOI 10.1186/s13195-021-00862-z

123. Zhang C., Lu J., Liu B., Cui Q., Wang Y. Primate-specific miR-603 is implicated in the risk and pathogenesis of Alzheimer’s disease. Aging. 2016;8(2):272-290. DOI 10.18632/aging.100887

124. Zhang H., Li J., Ren J., Sun S., Ma S., Zhang W., Yu Y., Cai Y., Yan K., Li W., Hu B., Chan P., Zhao G.G., Belmonte J.C.I., Zhou Q., Qu J., Wang S., Liu G.H. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell. 2021;12(9):695-716. DOI 10.1007/s13238-021-00852-9

125. Zhang W.J., Huang Y.Q., Fu A., Chen K.Z., Li S.J., Zhang Q., Zou G.J., Liu Y., Su J.Z., Zhou S.F., Liu J.W., Li F., Bi F.F., Li C.Q. The retrotransposition of L1 is involved in the reconsolidation of contextual fear memory in mice. CNS Neurol. Disord. Drug Targets. 2021; 20(3):273-284. DOI 10.2174/1871527319666200812225509

126. Zhao X., Wang S., Sun W. Expression of miR-28-3p in patients with Alzheimer’s disease before and after treatment and its clinical value. Exp. Ther. Med. 2020;20(3):2218-2226. DOI 10.3892/etm.2020.8920

127. Zheng D., Sabbagh J.J., Blair L.J., Darling A.L., Wen X., Dickey C.A. MicroRNA-511 binds to FKBP5 mRNA, which encodes a chaperone protein, and regulates neuronal differentiation. J. Biol. Chem. 2016;291(34):1797-1806. DOI 10.1074/jbc.M116.727941

128. Zhou Q.G., Liu M.Y., Lee H.W., Ishikawa F., Devkota S., Shen X.R., Jin X., Wu H.Y., Liu Z., Liu X., Jin X., Zhou H.H., Ro E.J., Zhang J., Zhang Y., Lin Y.H., Suh H., Zhu D.Y. Hippocampal TERT regulates spatial memory formation through modulation of neural development. Stem Cell Reports. 2017;9(2):543-556. DOI 10.1016/j.stemcr.2017.06.014


Рецензия

Просмотров: 595


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)