Generation and analysis of mouse embryonic stem cells with knockout of the Mcph1 (microcephalin) gene
https://doi.org/10.18699/vjgb-24-55
Abstract
Chromatin is not randomly distributed within the nucleus, but organized in a three-dimensional structure that plays a critical role in genome functions. Сohesin and condensins are conserved multi-subunit protein complexes that participate in mammalian genome organization by extruding chromatin loops. The fine temporal regulation of these complexes is facilitated by a number of other proteins, one of which is microcephalin (Mcph1). Mcph1 prevents condensin II from associating with chromatin through interphase. Loss of Mcph1 induces chromosome hypercondensation; it is not clear to what extent this reorganization affects gene expression. In this study, we generated several mouse embryonic stem cell (mESC) lines with knockout of the Mcph1 gene and analyzed their gene expression profile. Gene Ontology analyses of differentially expressed genes (DEGs) after Mcph1 knockout revealed gene categories related to general metabolism and olfactory receptor function but not to cell cycle control previously described for Mcph1. We did not find a correlation between the DEGs and their frequency of lamina association. Thus, this evidence questions the hypothesis that Mcph1 knockout-mediated chromatin reorganization governs gene expression in mESCs. Among the negative effects of Mcph1 knockout, we observed numerous chromosomal aberrations, including micronucleus formation and chromosome fusion. This confirms the role of Mcph1 in maintaining genome integrity described previously. In our opinion, dysfunction of Mcph1 may be a kind of “Rosetta stone” for deciphering the function of condensin II in the interphase nucleus. Thus, the cell lines with knocked-out Mcph1 can be used to further study the influence of chromatin structural proteins on gene expression.
About the Authors
A. M. YunusovaRussian Federation
Novosibirsk
A. V. Smirnov
Russian Federation
Novosibirsk
T. A. Shnaider
Russian Federation
Novosibirsk
I. E. Pristyazhnuk
Russian Federation
Novosibirsk
S. Y. Korableva
Russian Federation
Novosibirsk
N. R. Battulin
Russian Federation
Novosibirsk
References
1. Abdennur N., Schwarzer W., Pekowska A., Shaltiel I.A., Huber W., Haering C.H., Mirny L., Spitz F. Condensin II inactivation in inter-phase does not affect chromatin folding or gene expression. BioRxiv. 2018;437459. DOI 10.1101/437459
2. Alsolami M., Aboalola D., Malibari D., Alghamdi T., Alshekhi W., Jad H., Rumbold-Hall R., Altowairqi A.S., Bell S.M., Alsiary R.A. The emerging role of MCPH1/BRIT1 in carcinogenesis. Front. Oncol. 2023;13:1047588. DOI 10.3389/fonc.2023.1047588
3. Arroyo M., Kuriyama R., Trimborn M., Keifenheim D., Cañuelo A., Sánchez A., Clarke D.J., Marchal J.A. MCPH1, mutated in primary microcephaly, is required for efficient chromosome alignment during mitosis. Sci. Rep. 2017;7(1):13019. DOI 10.1038/s41598-017-12793-7
4. Borsos M., Perricone S.M., Schauer T., Pontabry J., de Luca K.L., de Vries S.S., Ruiz-Morales E.R., Torres-Padilla M.-E., Kind J. Genome-lamina interactions are established de novo in the early mouse embryo. Nature. 2019;569(7758):729-733. DOI 10.1038/s41586-019-1233-0
5. Brogna S., Wen J. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat. Struct. Mol. Biol. 2009;16(2):107-113. DOI 10.1038/nsmb.1550
6. Cicconi A., Rai R., Xiong X., Broton C., Al-Hiyasat A., Hu C., Dong S., Sun W., Garbarino J., Bindra R.S., Schildkraut C., Chen Y., Chang S. Microcephalin 1/BRIT1-TRF2 interaction promotes telomere replication and repair, linking telomere dysfunction to primary microcephaly. Nat. Commun. 2020;11(1):5861. DOI 10.1038/s41467-020-19674-0
7. Dixon J.R., Selvaraj S., Yue F., Kim A., Li Y., Shen Y., Hu M., Liu J.S., Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376-380. DOI 10.1038/nature11082
8. Dowen J.M., Bilodeau S., Orlando D.A., Hübner M.R., Abraham B.J., Spector D.L., Young R.A. Multiple structural maintenance of chromosome complexes at transcriptional regulatory elements. Stem Cell Reports. 2013;1(5):371-378. DOI 10.1016/j.stemcr.2013.09.002
9. Earnshaw W.C., Laemmli U.K. Architecture of metaphase chromosomes and chromosome scaffolds. J. Cell Biol. 1983;96(1):84-93. DOI 10.1083/jcb.96.1.84
10. Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., Kanemaki M.T., Xie L., Paulson J.R., Earnshaw W.C., Mirny L.A., Dekker J. A pathway for mitotic chromosome formation. Science. 2018;359(6376):eaao6135. DOI 10.1126/science.aao6135
11. Gruber R., Zhou Z., Sukchev M., Joerss T., Frappart P.-O., Wang Z.-Q. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1–Cdc25 pathway. Nat. Cell Biol. 2011;13(11):1325-1334. DOI 10.1038/ncb2342
12. Hirota T., Gerlich D., Koch B., Ellenberg J., Peters J.-M. Distinct functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. 2004;117(26):6435-6445. DOI 10.1242/jcs.01604
13. Hoencamp C., Dudchenko O., Elbatsh A.M.O., Brahmachari S., Raaijmakers J.A., van Schaik T., Sedeño Cacciatore Á., Contessoto V.G., van Heesbeen R.G.H.P., van den Broek B., … Medema R.H., van Steensel B., de Wit E., Onuchic J.N., Di Pierro M., Lieberman Aiden E., Rowland B.D. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science. 2021;372(6545):984-989. DOI 10.1126/science.abe2218
14. Houlard M., Cutts E.E., Shamim M.S., Godwin J., Weisz D., Presser Aiden A., Lieberman Aiden E., Schermelleh L., Vannini A., Nasmyth K. MCPH1 inhibits condensin II during interphase by regulating its SMC2-kleisin interface. eLife. 2021;10:e73348. DOI 10.7554/eLife.73348
15. Jackson A.P., Eastwood H., Bell S.M., Adu J., Toomes C., Carr I.M., Roberts E., Hampshire D.J., Crow Y.J., Mighell A.J., Karbani G., Jafri H., Rashid Y., Mueller R.F., Markham A.F., Woods C.G. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. 2002;71(1):136-142. DOI 10.1086/341283
16. Journiac N., Gilabert-Juan J., Cipriani S., Benit P., Liu X., Jacquier S., Faivre V., Delahaye-Duriez A., Csaba Z., Hourcade T., Melinte E., Lebon S., Violle-Poirsier C., Oury J.-F., Adle-Biassette H., Wang Z.-Q., Mani S., Rustin P., Gressens P., Nardelli J. Cell metabolic alterations due to Mcph1 mutation in microcephaly. Cell Rep. 2020;31(2):107506. DOI 10.1016/j.celrep.2020.03.070
17. Kristofova M., Ori A., Wang Z.-Q. Multifaceted microcephaly-related gene MCPH1. Cells. 2022;11(2):275. DOI 10.3390/cells11020275
18. Lin S.-Y., Elledge S.J. Multiple tumor suppressor pathways negatively regulate telomerase. Cell. 2003;113(7):881-889. DOI 10.1016/S0092-8674(03)00430-6
19. Liu X., Zhou Z.-W., Wang Z.-Q. The DNA damage response molecule MCPH1 in brain development and beyond. Acta Biochim. Biophys. Sin. 2016;48(7):678-685. DOI 10.1093/abbs/gmw048
20. Marchal C., Sima J., Gilbert D.M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 2019;20(12):721-737. DOI 10.1038/s41580-019-0162-y
21. Matveeva N.M., Fishman V.S., Zakharova I.S., Shevchenko A.I., Pristyazhnyuk I.E., Menzorov A.G., Serov O.L. Alternative dominance of the parental genomes in hybrid cells generated through the fusion of mouse embryonic stem cells with fibroblasts. Sci. Rep. 2017;7(1):18094. DOI 10.1038/s41598-017-18352-4
22. Menzorov A.G., Orishchenko K.E., Fishman V.S., Shevtsova A.A., Mungalov R.V., Pristyazhnyuk I.E., Kizilova E.A., Matveeva N.M., Alenina N., Bader M., Rubtsov N.B., Serov O.L. Targeted genomic integration of EGFP under tubulin beta 3 class III promoter and mEos2 under tryptophan hydroxylase 2 promoter does not produce sufficient levels of reporter gene expression. J. Cell. Biochem. 2019; 120(10):17208-17218. DOI 10.1002/jcb.28981
23. Naumova N., Imakaev M., Fudenberg G., Zhan Y., Lajoie B.R., Mirny L.A., Dekker J. Organization of the mitotic chromosome. Science. 2013;342(6161):948-953. DOI 10.1126/science.1236083
24. Neitzel H., Neumann L.M., Schindler D., Wirges A., Tönnies H., Trimborn M., Krebsova A., Richter R., Sperling K. Premature chromosome condensation in humans associated with microcephaly and mental retardation: a novel autosomal recessive condition. Am. J. Hum. Genet. 2002;70(4):1015-1022. DOI 10.1086/339518
25. Ono T., Fang Y., Spector D.L., Hirano T. Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol. Biol. Cell. 2004;15(7):3296-3308. DOI 10.1091/mbc.e04-03-0242
26. Patro R., Duggal G., Love M.I., Irizarry R.A., Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14(4):417-419. DOI 10.1038/nmeth.4197
27. Pulvers J.N., Journiac N., Arai Y., Nardelli J. MCPH1: a window into brain development and evolution. Front. Cell. Neurosci. 2015;9:92. DOI 10.3389/fncel.2015.00092
28. Rao S.S.P., Huntley M.H., Durand N.C., Stamenova E.K., Bochkov I.D., Robinson J.T., Sanborn A.L., Machol I., Omer A.D., Lander E.S., Aiden E.L. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665-1680. DOI 10.1016/j.cell.2014.11.021
29. Sanders J.T., Freeman T.F., Xu Y., Golloshi R., Stallard M.A., Hill A.M., San Martin R., Balajee A.S., McCord R.P. Radiation-induced DNA damage and repair effects on 3D genome organization. Nat. Com-mun. 2020;11(1):6178. DOI 10.1038/s41467-020-20047-w
30. Shi L., Li M., Su B. MCPH1/BRIT1 represses transcription of the human telomerase reverse transcriptase gene. Gene. 2012;495(1):1-9. DOI 10.1016/j.gene.2011.12.053
31. Shi L., Li M., Lin Q., Qi X., Su B. Functional divergence of the brain-size regulating gene MCPH1 during primate evolution and the origin of humans. BMC Biol. 2013;11(1):62. DOI 10.1186/1741-7007-11-62
32. Stadhouders R., Filion G.J., Graf T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature. 2019;569(7756): 345-354. DOI 10.1038/s41586-019-1182-7
33. Trimborn M., Schindler D., Neitzel H.H.T. Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II. Cell Cycle. 2006;5(3):322-326. DOI 10.4161/cc.5.3.2412
34. Wallace H.A., Bosco G. Condensins and 3D organization of the interphase nucleus. Curr. Genet. Med. Rep. 2013;1(4):219-229. DOI 10.1007/s40142-013-0024-4
35. Yamashita D., Shintomi K., Ono T., Gavvovidis I., Schindler D., Neitzel H., Trimborn M., Hirano T. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J. Cell Biol. 2011;194(6):841-854. DOI 10.1083/jcb.201106141
36. Yang S., Lin F., Lin W. MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis. EMBO Rep. 2008;9(9):907-915. DOI 10.1038/embor.2008.128
37. Yuen K.C., Slaughter B.D., Gerton J.L. Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Sci. Adv. 2017;3(6): e1700191. DOI 10.1126/sciadv.1700191
38. Yunusova A., Smirnov A., Shnaider T., Lukyanchikova V., Afonnikova S., Battulin N. Evaluation of the OsTIR1 and AtAFB2 AID systems for genome architectural protein degradation in mammalian cells. Front. Mol. Biosci. 2021;8:757394. DOI 10.3389/fmolb.2021.757394