Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Identification of quantitative trait loci of pod dehiscence in a collection of soybean grown in the southeast of Kazakhstan

https://doi.org/10.18699/vjgb-24-58

Abstract

Soybean [Glycine max (L.) Merr.] is one of the important crops that are constantly increasing their cultivation area in Kazakhstan. It is particularly significant in the southeastern regions of the country, which are currently predominant areas for cultivating this crop. One negative trait reducing yield in these dry areas is pod dehiscence (PD). Therefore, it is essential to understand the genetic control of PD to breed new cultivars with high yield potential. In this study, we evaluated 273 soybean accessions from different regions of the world for PD resistance in the conditions of southeastern regions of Kazakhstan in 2019 and 2021. The field data for PD suggested that 12 accessions were susceptible to PD in both studied years, and 32 accessions, in one of the two studied years. The genotyping of the collection using a DNA marker for the Pdh1 gene, a major gene for PD, revealed that 244 accessions had the homozygous R (resistant) allele, 14 had the homozygous S (susceptible) allele, and 15 accessions showed heterozygosity. To identify additional quantitative trait loci (QTLs), we applied an association mapping study using a 6K SNP Illumina iSelect array. The results suggested that in addition to major QTL on chromosome 16, linked to the physical location of Pdh1, two minor QTLs were identified on chromosomes 10 and 13. Both minor QTLs for PD were associated with calmodulin-binding protein, which presumably plays an important role in regulating PD in dry areas. Thus, the current study provided additional insight into PD regulation in soybean. The identified QTLs for PD can be efficiently employed in breeding for high-yield soybean cultivars.

About the Authors

B. N. Doszhanova
Institute of Plant Biology and Biotechnology; Al-Farabi Kazakh National University
Kazakhstan

Almaty



A. K. Zatybekov
Institute of Plant Biology and Biotechnology
Kazakhstan

Almaty



S. V. Didorenko
Kazakh Research Institute of Agriculture and Plant Growing
Kazakhstan

Almalybak, Almaty region



T. Suzuki
Hokkaido Research Organization
Japan

Sapporo



Y. Yamashita
Hokkaido Research Organization
Japan

Sapporo



Y. Turuspekov
Institute of Plant Biology and Biotechnology; Al-Farabi Kazakh National University
Kazakhstan

Almaty



References

1. Abugalieva S., Didorenko S., Anuarbek S., Volkova L., Gerasimova Y., Sidorik I., Turuspekov Y. Assessment of soybean flowering and seed maturation time in different latitude regions of Kazakhstan. PLoS One. 2016;11(12):e0166894. DOI 10.1371/journal.pone.0166894

2. Allaire J. RStudio: Integrated Development Environment for R. In: The R User Conference, useR! August 16–18 2011. Book of Contributed Abstracts. Univ. of Warwick, Coventry, UK, 2011;14

3. Bailey M.A., Mian M.A.R., Carter J., Ashley D.A., Boerma H.R. Pod dehiscence of soybean: identification of quantitative trait loci. J. Hered. 1997;88(2):152-154. DOI 10.1093/oxfordjournals.jhered.a023075

4. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B: Stat. Methodol. 1995;57(1):289-300. DOI 10.1111/j.2517-6161.1995.tb02031.x

5. Benvenuti S. Weed seed movement and dispersal strategies in the agricultural environment. Weed Biol. Manage. 2007;7(3):141-157. DOI 10.1111/j.1445-6664.2007.00249.x

6. Bhor T.J., Chimote V.P., Deshmukh M.P. Inheritance of pod shattering in soybean [Glycine max (L.) Merrill]. Electron. J. Plant Breed. 2014;5(4):671-676

7. Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633-2635. DOI 10.1093/bioinformatics/btm308

8. Buckler E., Casstevens T., Bradbury P., Zhang Z. User Manual for TASSEL – Trait Analysis by aSSociation, Evolution and Linkage. Version 3. The Buckler Lab at Cornell University, 2011

9. Didorenko S.V., Alenkhanovna Z.A., Sidorik I., Abuglieva A.I., Kudaibergenov M.S., Iskakov A.R. Diversification of crop production by means of spreading soybeans to the northern regions of the Republic of Kazakhstan. Biosci. Biotechnol. Res. Asia. 2016;13(1):23-30. DOI 10.13005/bbra/1998

10. Dong Y., Yang X., Liu J., Wang B.H., Liu B.L., Wang Y.Z. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat. Commun. 2014;5:3352. DOI 10.1038/ncomms4352

11. Doszhanova B.N., Didorenko S.V., Zatybekov A.K., Turuspekov Y.K., Abugalieva S.I. Analysis of soybean world collection in conditions of south-eastern Kazakhstan. Int. J. Biol. Chem. 2019;12(1):33-40. DOI 10.26577/ijbch-2019-1-i5

12. Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14(8):2611-2620. DOI 10.1111/j.1365-294X.2005.02553.x

13. Fuller D.Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 2007;100(5):903-924. DOI 10.1093/aob/mcm048

14. Funatsuki H., Hajika M., Hagihara S., Yamada T., Tanaka Y., Tsuji H., Ishimoto M., Fujino K. Confirmation of the location and the effects of a major QTL controlling pod dehiscence, qPDH1, in soybean. Breed. Sci. 2008;58(1):63-69. DOI 10.1270/jsbbs.58.63

15. Funatsuki H., Suzuki M., Hirose A., Inaba H., Yamada T., Hajika M., Komatsu K., Katayama T., Sayama T., Ishimoto M., Fujino K. Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc. Natl. Acad. Sci. USA. 2014;111(50):17797-17802. DOI 10.1073/pnas.1417282111

16. Han J., Han D., Guo Y., Yan H., Wei Z., Tian Y., Qiu L. QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing. Theor. Appl. Genet. 2019;132(8):2253-2272. DOI 10.1007/s00122-019-03352-x

17. Hong-Bo S., Li-Ye C., Ming-An S., Shi-Qing L., Ji-Cheng Y. Bioengineering plant resistance to abiotic stresses by the global calcium signal system. Biotechnol. Adv. 2008;26(6):503-510. DOI 10.1016/j.biotechadv.2008.04.004

18. Hu D., Kan G., Hu W., Li Y., Hao D., Li X., Yang H., Yang Z., He X., Huang F., Yu D. Identification of loci and candidate genes responsible for pod dehiscence in soybean via genome-wide association analysis across multiple environments. Front. Plant Sci. 2019;10:811. DOI 10.3389/fpls.2019.00811

19. Huang X., Han B. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 2014;65:531-551. DOI 10.1146/annurev-arplant-050213-035715

20. Jia J., Huan W., Zhan-dong C., Ru-qian W., Jing-hua H., Qiu-ju X., Xiaohui X., Qi-bin M., Hai N., Yan-bo C. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.]. J. Integr. Agric. 2022;21(11):3169-3184. DOI 10.1016/j.jia.2022.08.082

21. Kang S.T., Kwak M., Kim H.K., Choung M.G., Han W.Y., Baek I.Y., Kim M.Y., Van K., Lee S.H. Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean [Glycine max (L.) Merr.]. Euphytica. 2009;166(1):15-24. DOI 10.1007/s10681-008-9810-6

22. Krisnawati A., Adie M.M. Identification of soybean genotypes for pod shattering resistance associated with agronomical and morphological characters. Biosaintifika. 2017;9(2):193-200. DOI 10.15294/biosaintifika.v9i2.8722

23. Liu B., Fujita T., Yan Z.H., Sakamoto S., Xu D., Abe J. QTL mapping of domestication-related traits in soybean (Glycine max). Ann. Bot. 2007;100(5):1027-1038. DOI 10.1093/aob/mcm149

24. Ogutcen E., Pandey A., Khan M.K., Marques E., Penmetsa R.V., Kahraman A., Von Wettberg E.J.B. Pod shattering: a homologous series of variation underlying domestication and an avenue for crop improvement. Agronomy. 2018;8(8):1-23. DOI 10.3390/agronomy8080137

25. Parker T.A., Lo S., Gepts P. Pod shattering in grain legumes: emerging genetic and environment-related patterns. Plant Cell. 2021;33(2): 179-199. DOI 10.1093/plcell/koaa025

26. Pritchard J.K., Stephens P., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-959. DOI 10.1093/genetics/155.2.945

27. Rafalski J.A. Association genetics in crop improvement. Curr. Opin.

28. Plant Biol. 2010;13(2):174-180. DOI 10.1016/j.pbi.2009.12.004

29. Romkaew J., Umezaki T. Pod dehiscence in soybean: assessing methods and varietal difference. Plant Prod. Sci. 2006;9(4):373-382. DOI 10.1626/pps.9.373

30. Schmutz J., Cannon S.B., Schlueter J., Ma J., Mitros T., Nelson W., Hyten D.L., Song Q., Thelen J.J., Cheng J., … Cregan P., Specht J., Grimwood J., Rokhsar D., Stacey G., Shoemaker R.C., Jack-son S.A. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178-183. DOI 10.1038/nature08670

31. Sedivy E.J., Wu F., Hanzawa Y. Soybean domestication: the origin, genetic architecture and molecular bases. New Phytol. 2017;214(2): 539-553. DOI 10.1111/nph.14418

32. Seo J.H., Kang B.K., Dhungana S.K., Oh J.H., Choi M.S., Park J.H., Shin S.O., Kim H.S., Baek I.Y., Sung J.S., Jung C.S., Kim K.S., Jun T.H. QTL mapping and candidate gene analysis for pod shattering tolerance in soybean (Glycine max). Plants. 2020;9(9):1163. DOI 10.3390/plants9091163

33. Song Q., Hyten D.L., Jia G., Quigley C.V., Fickus E.W., Nelson R.L., Cregan P.B. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One. 2013;8(1):e54985. DOI 10.1371/journal.pone.0054985

34. Suzuki T., Sato M., Takeuchi T. Evaluation of the effects of five QTL regions on Fusarium head blight resistance and agronomic traits in spring wheat (Triticum aestivum L.). Breed. Sci. 2012;62(1):11-17. DOI 10.1270/jsbbs.62.11

35. Tsuchiya T. Physiological and genetic analysis of pod shattering in soybeans. Jpn. Agric. Res. Q. 1987;21(3):166-175

36. Vollmann J., Fritz C.N., Wagentristl H., Ruckenbauer P. Environmental and genetic variation of soybean seed protein content under Central European growing conditions. J. Sci. Food Agric. 2000;80(9):1300-1306. DOI 10.1002/1097-0010(200007)80:9

37. 0.CO;2-I Yamada T., Funatsuki H., Hagihara S., Fujita S., Tanaka Y., Tsuji H., Ishimoto M., Fujino K., Hajika M. A major QTL, qPDH1, is commonly involved in shattering resistance of soybean cultivars. Breed. Sci. 2009;59(4):435-440. DOI 10.1270/jsbbs.59.435

38. Yu Q., Liu Y.L., Sun G.Z., Liu Y.X., Chen J., Zhou Y.B., Chen M., Ma Y.Z., Xu Z.S., Lan J.H. Genome-wide analysis of the soybean calmodulin-binding protein 60 family and identification of GmCBP60A-1 responses to drought and salt stresses. Int. J. Mol. Sci. 2021;22(24):13501. DOI 10.3390/ijms222413501

39. Zatybekov A., Abugalieva S., Didorenko S., Gerasimova Y., Sidorik I., Anuarbek S., Turuspekov Y. GWAS of agronomic traits in soybean collection included in breeding pool in Kazakhstan. BMC Plant Biol. 2017;17(Suppl.1):179. DOI 10.1186/s12870-017-1125-0

40. Zatybekov A., Abugalieva S., Didorenko S., Rsaliyev A., Turuspekov Y. GWAS of a soybean breeding collection from South East and South Kazakhstan for resistance to fungal diseases. Vavilov J. Genet. Breed. 2018;22(5):536-543. DOI 10.18699/VJ18.392

41. Zhang J., Singh A.K. Genetic control and geo-climate adaptation of pod dehiscence provide novel insights into soybean domestication. G3: Genes Genomes Genetics. 2020;10(2):545-554. DOI 10.1534/g3.119.400876

42. Zhang L., Boahen S. Evaluation of critical shattering time of early-maturity soybeans under early soybean production system. Agric. Biol. J. North Am. 2010;1(4):440-447. DOI 10.5251/abjna.2010.1.4.440.447

43. Zhang Q., Tu B., Liu C., Liu X. Pod anatomy, morphology and dehiscing forces in pod dehiscence of soybean (Glycine max (L.) Merrill). Flora. 2018;248:48-53. DOI 10.1016/j.flora.2018.08.014

44. Zhou Y., Zhao W., Lai Y., Zhang B., Zhang D. Edible plant oil: global status, health issues, and perspectives. Front. Plant Sci. 2020;11: 1315. DOI 10.3389/fpls.2020.01315


Review

Views: 304


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)