Перспективы биообогащения пшеницы минералами: классическая селекция и агрономия
https://doi.org/10.18699/vjgb-24-59
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Недостаток потребления микро- и макроэлементов и витаминов в продуктах питания, который затрагивает более двух миллиардов человек на земном шаре, негативно сказывается на здоровье и приводит к развитию хронических заболеваний. Одним из источников полезных нутриентов является пшеница, которая обеспечивает пищевой энергией большинство населения мира. Создание современных высокоурожайных сортов привело к значительному обеднению минерального состава зерна и сокращению потребления минералов через продукты питания. Биофортификация – активно развивающееся направление, основной целью которого является улучшение питательных качеств сельскохозяйственных культур с помощью комплекса классических и современных методов. К числу основных технологий, используемых в программах биофортификации пшеницы, можно отнести традиционную селекцию, включающую методы гибридизации и отбора, современную селекцию с дополнительным привлечением методов картирования генов/QTL и биоинформатического анализа, трансгенез, мутагенез и геномное редактирование. Успехи в создании биообогащенных сортов были достигнуты в рамках различных международных программ, финансируемых HarvestPlus, CIMMYT, ICARDA, с помощью традиционной селекции и агрономических методов. Несмотря на перспективность методов трансгенеза и геномного редактирования для создания биообогащенных культур, они требуют значительных инвестиционных вложений и трудозатратны, поэтому данные технологии применительно к пшенице находятся в стадии разработки и не имеют пока практического выхода. В последние годы интерес к биообогащению пшеницы возрос в связи с успехами в области картирования генов и QTL для хозяйственно важных признаков. Разработка новых маркеров на основе результатов секвенирования генома пшеницы и привлечение биоинформатических методов анализа (GWAS, meta-QTL) расширили информацию по контролю признаков, определяющих содержание минералов в зерне, и выявили ключевые гены-кандидаты. В данном обзоре описано современное состояние исследований в области генетической биофортификации пшеницы в мире и в России. Приведены сведения об использовании гермоплазмы культурных и дикорастущих родственников для расширения генетического разнообразия современных сортов пшеницы.
Об авторах
И. Н. ЛеоноваРоссия
Новосибирск
Е. В. Агеева
Россия
р.п. Краснообск, Новосибирская область
В. К. Шумный
Россия
Новосибирск
Список литературы
1. Ali A.A.H. Overview of the vital roles of macro minerals in the human body. J. Trace Elem. Miner. 2023;4:100076. https://doi.org/10.1016/j.jtemin.2023.100076
2. Ali M., Ahmed I., Tariq H., Abbas S., Zia M.H., Mumtaz A., Sharif M. Growth improvement of wheat (Triticum aestivum) and zinc biofortification using potent zinc-solubilizing bacteria. Front. Plant Sci. 2023;14:1140454. https://doi.org/10.3389/fpls.2023.1140454
3. Alomari D.Z., Eggert K., Von Wirén N., Pillen K., Röder M.S. Genome-wide association study of calcium accumulation in grains of European wheat cultivars. Front. Plant Sci. 2017;8:1797. https://doi.org/10.3389/fpls.2017.01797
4. Alomari D.Z., Eggert K., Von Wirén N., Polley A., Plieske J., Ganal M.W., Liu F., Pillen K., Röder M.S. Whole-genome association mapping and genomic prediction for iron concentration in wheat grains. Int. J. Mol. Sci. 2019;20(1):76. https://doi.org/10.3390/ijms20010076
5. Alvarez J.B., Guzmán C. Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. Theor. Appl. Genet. 2018;131(2):225-251. https://doi.org/10.1007/s00122-017-3042-x
6. Andersson M.S., Saltzman A., Virk P.S., Pfeiffer W.H. Progress update: сrop development of biofortified staple food crops under HarvestPlus. Afr. J. Food Agric. Nutr. Dev. 2017;17(2):11905- 11935. https://doi.org/10.18697/ajfand.78.HarvestPlus05
7. Aristarkhov A.N., Busygin A.S., Yakovleva T.A. Selenium fertilizer effect on the yield and elemental composition of spring wheat (Triticum aestivum L.) in the soil and climatic conditions of the north-east of Non-Chernozem zone. Problemy Agrokhimii i Ekologii = Agrochemistry and Ecology Problems. 2018;1:3-12 (in Russian)
8. Bhatta M., Stephen Baenziger P., Waters B.M., Poudel R., Belamkar V., Poland J., Morgounov A. Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int. J. Mol. Sci. 2018;19(10):3237. https://doi.org/10.3390/ijms19103237
9. Bouis H.E., Saltzman A. Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 2017;12:49-58. https://doi.org/10.1016/j.gfs.2017.01.009
10. Butt M.S., Ihsanullah Qamar M., Anjum F.M., Aziz A., Randhawa M.A. Development of minerals-enriched brown flour by utilizing wheat milling by-products. Nutr. Food Sci. 2004;34(4):161-165. https://doi.org/10.1108/00346650410544855
11. Cabas-Lühmann P., Schwember A.R., Arriagada O., Marcotuli I., Matus I., Alfaro C., Gadaleta A. Meta-QTL analysis and candidate genes for quality traits, mineral content, and abiotic-related traits in wild emmer. Front. Plant Sci. 2024;15:1305196. https://doi.org/10.3389/fpls.2024.1305196
12. Cakmak I., Torun A., Özkan H., Millet E., Feldman M., Fahima T., Korol A., Nevo E., Braun H.J. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr. 2004;50(7):1047-1054. https://doi.org/10.1080/00380768.2004.10408573
13. Cakmak I., Pfeiffer W.H., McClafferty B. Biofortification of durum wheat with zinc and iron. Cereal Chem. 2010;87(1):10-20. https://doi.org/10.1094/CCHEM-87-1-0010
14. Caldelas C., Rezzouk F.Z., Aparicio Gutiérrez N., Diez-Fraile M.C., raus Ortega J.L. Interaction of genotype, water availability, and nitrogen fertilization on the mineral content of wheat grain. Food Chem. 2023;404:134565. https://doi.org/10.1016/j.foodchem.2022.134565
15. Calderini D.F., Ortiz-Monasterio I. Are synthetic hexaploids a means of increasing grain element concentrations in wheat? Euphytica. 2003; 134(2):169-178. https://doi.org/10.1023/B:EUPH.0000003849.10595.ac
16. Chatzav M., Peleg Z., Ozturk L., Yazici A., Fahima T., Cakmak I., Saranga Y. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann. Bot. 2010;105(7):1211-1220. https://doi.org/10.1093/aob/mcq024
17. Chikishev D.V., Abramov N.V., Larina N.S., Sherstobitov S.V. Chemical composition of spring wheat at different levels of mineral nutrition. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya = Proceedings of Universities. Applied Chemistry and Biotechnology. 2020;10(3):496-505. https://doi.org/10.21285/2227-2925-2020-10-3-496-505 (in Russian)
18. Ciudad-Mulero M., Matallana-González M.C., Callejo M.J., Carrillo J.M., Morales P., Fernández-Ruiz V. Durum and bread wheat flours. Preliminary mineral characterization and its potential health claims. Agronomy. 2021;11:108. https://doi.org/10.3390/agronomy11010108
19. Collard B.C.Y., Mackill D.J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2008;363(1491):557-572. https://doi.org/10.1098/rstb.2007.2170
20. Crespo-Herrera L.A., Velu G., Singh R.P. Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Ann. Appl. Biol. 2016;169(1):27-35. https://doi.org/10.1111/aab.12276
21. Crespo-Herrera L.A., Govindan V., Stangoulis J., Hao Y., Singh R.P. QTL mapping of grain Zn and Fe concentrations in two hexaploid wheat RIL populations with ample transgressive segregation. Front. Plant Sci. 2017;8:01800. https://doi.org/10.3389/fpls.2017.01800
22. De Santis M.A., Soccio M., Laus M.N., Flagella Z. Influence of drought and salt stress on durum wheat grain quality and composition: a review. Plants. 2021;10(12):2599. https://doi.org/10.3390/plants10122599
23. De Vita P., Platani C., Fragasso M., Ficco D.B.M., Colecchia S.A., Del Nobile M.A., Padalino L., Di Gennaro S., Petrozza A. Selenium-enriched durum wheat improves the nutritional profile of pasta without altering its organoleptic properties. Food Chem. 2017;214:374-382. https://doi.org/10.1016/j.foodchem.2016.07.015
24. Dhua S., Kumar K., Kumar Y., Singh L., Sharanagat V.S. Composition, characteristics and health promising prospects of black wheat: a review. Trends Food Sci. Technol. 2021;112:780-794. https://doi.org/10.1016/j.tifs.2021.04.037
25. Faber M., Berti C., Smuts M. Prevention and control of micronutrient deficiencies in developing countries: current perspectives. Nutr. Diet. Suppl. 2014;6:41-57. https://doi.org/10.2147/nds.s43523
26. Fan M.S., Zhao F.J., Fairweather-Tait S.J., Poulton P.R., Dunham S.J., McGrath S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 2008;22(4):315-324. https://doi.org/10.1016/j.jtemb.2008.07.002
27. Farkas A., Molnár I., Dulai S., Rapi S., Oldal V., Cseh A., Kruppa K., Molnár-Láng M. Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat-Aegilops biuncialis substitution and 3Mb.4BS trans-location identified by GISH and FISH. Genome. 2014;57(2):61-67. https://doi.org/10.1139/gen-2013-0204
28. Ficco D.B.M., Riefolo C., Nicastro G., De Simone V., Di Gesù A.M., Beleggia R., Platani C., Cattivelli L., De Vita P. Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crop. Res. 2009;111(3):235-242. https://doi.org/10.1016/j.fcr.2008.12.010
29. Ficco D.B.M., De Simone V., Colecchia S.A., Pecorella I., Platani C., Nigro F., Finocchiaro F., Papa R., De Vita P. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. J. Agric. Food Chem. 2014;62(34):8686-8695. https://doi.org/10.1021/jf5003683
30. Fisenko A.V., Kalmykova L.P., Kuznetsova N.L., Kuz’mina N.P., Yermolenko O.I., Upelniek V.P. Selection of purple-grain common wheat and its technological properties. Agrarnaya Rossiya = Agricultural Russia. 2020;10:43-48. https://doi.org/10.30906/1999-5636-2020-10-43-48 (in Russian)
31. Fitileva Z.E., Sibikeev S.N. Bread wheat breeding for functional nutrition products. Agrarnyi Nauchnyi Zhurnal = The Agrarian Scientific Journal. 2023;7:48-55. https://doi.org/10.28983/asj.y2023i7pp48-55 (in Russian)
32. Garcia-Oliveira A.L., Chander S., Ortiz R., Menkir A., Gedil M. Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. Front. Plant Sci. 2018;9:937. https://doi.org/10.3389/fpls.2018.00937
33. Garg M., Sharma N., Sharma S., Kapoor P., Kumar A., Chunduri V., Arora P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 2018;5:12. https://doi.org/10.3389/fnut.2018.00012
34. Garvin D.F., Welch R.M., Finley J.W. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J. Sci. Food Agric. 2006;86(13):2213-2220. https://doi.org/10.1002/jsfa.2601
35. Genchi G., Carocci A., Lauria G., Sinicropi M.S., Catalano A. Nickel: human health and environmental toxicology. Int. J. Environ. Res. Public Health. 2020;17(3):679. https://doi.org/10.3390/ijerph17030679
36. Golubkina N.А., Sokolova A.J., Sindireva A.V. The role of growth promoting bacteria in selenium accumulation by plants. Ovoshchi Rossii = Vegetable Crops of Russia. 2017;2:81-85. https://doi.org/10.18619/2072-9146-2017-2-81-85 (in Russian)
37. Gordeeva E.I., Shoeva O.Y., Shamanin V.P., Khlestkina E.K. The molecular markers applying in breeding of spring bread wheat (Triticum aestivum L.) lines with different anthocyanin coloration of the grains. Pisma v Vavilovskii Zhurnal Genetiki i Selektsii = Letters to Vavilov Journal of Genetics and Breeding. 2023;9(2):86-99. https://doi.org/10.18699/LettersVJ-2023-9-11 (in Russian)
38. Gupta O.P., Singh A.K., Singh A., Singh G.P., Bansal K.C., Datta S.K. Wheat biofortification: utilizing natural genetic diversity, genome-wide association mapping, genomic selection, and genome editing technologies. Front. Nutr. 2022;9:826131. https://doi.org/10.3389/fnut.2022.826131
39. Gupta P.K., Balyan H.S., Sharma S., Kumar R. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2020;133:1569-1602. https://doi.org/10.1007/s00122-020-03583-3
40. Gupta P.K., Balyan H.S., Sharma S., Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. Theor. Appl. Genet. 2021;134:1-35. https://doi.org/10.1007/s00122-020-03709-7
41. Hao Y., Velu G., Peña R.J., Singh S., Singh R.P. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol. Breed. 2014;34(4): 1893-1902. https://doi.org/10.1007/s11032-014-0147-7
42. Hao Y., Kong F., Wang L., Zhao Yu, Li M., Che N., Li S., Wang M., Hao M., Zhang X., Zhao Y. Genome-wide association study of grain micronutrient concentrations in bread wheat. J. Integr. Agric. 2024; 23(5):1468-1480. https://doi.org/10.1016/j.jia.2023.06.030
43. Hassan M.U., Chattha M.U., Ullah A., Khan I., Qadeer A., Aamer M., Khan A.U., Nadeem F., Khan T.A. Agronomic biofortification to improve productivity and grain Zn concentration of bread wheat. Int. J. Agric. Biol. 2019;21:615-620. https://doi.org/10.17957/IJAB/15.0936
44. Helguera M., Abugalieva A., Battenfield S., Békés F., Branlard G., Cuniberti M., Hüsken A., Johansson E., Morris C.F., Nurit E., Sis-sons M., Vazquez D. Grain quality in breeding. In: Igrejas G., Ikeda T.M., Guzmán C. (Eds.) Wheat Quality for Improving Processing and Human Health. Switzerland: Springer, 2020;273-308. https://doi.org/10.1007/978-3-030-34163-3
45. Islam M.R., Akash S., Jony M.H., Alam M.N., Nowrin F.T., Rah-man M.M., Rauf A., Thiruvengadam M. Exploring the potential function of trace elements in human health: a therapeutic perspective. Mol. Cell. Biochem. 2023;478(10):2141-2171. https://doi.org/10.1007/s11010-022-04638-3
46. Jaskulska I., Jaskulski D., Gałȩzewski L., Knapowski T., Kozera W., Wacławowicz R. Mineral composition and baking value of the winter wheat grain under varied environmental and agronomic conditions. J. Chem. 2018;2018:5013825. https://doi.org/10.1155/2018/5013825
47. Jomova K., Makova M., Alomar S.Y., Alwasel S.H., Nepovimova E., Kuca K., Rhodes C.J., Valko M. Essential metals in health and disease. Chem. Biol. Interact. 2022;367:110173. https://doi.org/10.1016/j.cbi.2022.110173
48. Juliana P., Govindan V., Crespo-Herrera L., Mondal S., Huerta-Espino J., Shrestha S., Poland J., Singh R.P. Genome-wide association mapping identifies key genomic regions for grain zinc and iron bio-fortification in bread wheat. Front. Plant Sci. 2022;13:903819. https://doi.org/10.3389/fpls.2022.903819
49. Kamble U., Mishra C.N., Govindan V., Sharma A.K., Pawar S., Kumar S., Krishnappa G., Gupta O.P., Singh G.P., Singh G. Ensuring nutritional security in India through wheat biofortification: a review. Genes. 2022;13(12):2298. https://doi.org/10.3390/genes13122298
50. Kaur H., Sharma P., Kumar J., Singh V.K., Vasistha N.K., Gahlaut V., Tyagi V., Verma S.K., Singh S., Dhaliwal H.S., Sheikh I. Genetic analysis of iron, zinc and grain yield in wheat-Aegilops derivatives using multi-locus GWAS. Mol. Biol. Rep. 2023;50(11):9191-9202. https://doi.org/10.1007/s11033-023-08800-y
51. Kaznina N.M., Ignatenko A.A., Batova Yu.V. Copper content in roots and shoots of cereals under different types of salicylic acid treatment. Trudy Karel’skogo Nauchnogo Tsentra RAN = Transactions of the Karelian Research Centre RAS. 2022;7:92-99. https://doi.org/10.17076/eb1701 (in Russian)
52. Khan M.I.R., Nazir F., Maheshwari C., Chopra P., Chhillar H., Sreenivasulu N. Mineral nutrients in plants under changing environments: a road to future food and nutrition security. Plant Genome. 2023;16(4):e20362. https://doi.org/10.1002/tpg2.20362
53. Khokhar J.S., Sareen S., Tyagi B.S., Singh G., Wilson L., King I.P., Young S.D., Broadley M.R. Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat. PLoS One. 2018; 13(1):e0192026. https://doi.org/10.1371/journal.pone.0192026
54. Kostin V.I., Mudarisov F.A., Isaychev V.A. The Role of Microelements in Increasing the Yield of Spring and Winter Wheat and Improving the Milling and Baking Qualities of Grain. Ulyanovsk: UlGAU Publ., 2020 (in Russian)
55. Krishnappa G., Rathan N.D., Sehgal D., Ahlawat A.K., Singh Santosh K., Singh Sumit K., Shukla R.B., Jaiswal J.P., Solanki I.S., Singh G.P., Singh A.M. Identification of novel genomic regions for biofortification traits using an SNP marker-enriched linkage map in wheat (Triticum aestivum L.). Front. Nutr. 2021;8:669444. https://doi.org/10.3389/fnut.2021.669444
56. Kumari A., Sharma S., Sharma N., Chunduri V., Kapoor P., Kaur S., Goyal A., Garg M. Influence of biofortified colored wheats (purple, blue, black) on physicochemical, antioxidant and sensory characteristics of chapatti (Indian flatbread). Molecules. 2020;25:5071. https://doi.org/10.3390/molecules25215071
57. Kutman U.B., Yildiz B., Cakmak I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J. Cereal Sci. 2011;53(1):118-125. https://doi.org/10.1016/j.jcs.2010.10.006
58. Liu J., Huang L., Li T., Liu Y., Yan Z., Tang G., Zheng Y., Liu D., Wu B. Genome-wide association study for grain micronutrient concentrations in wheat advanced lines derived from wild emmer. Front. Plant Sci. 2021;12:651283. https://doi.org/10.3389/fpls.2021.651283
59. Liu Y., Huang S., Jiang Z., Wang Y., Zhang Z. Selenium biofortification modulates plant growth, microelement and heavy metal concentrations, selenium uptake, and accumulation in black-grained wheat. Front. Plant Sci. 2021;12:748523. https://doi.org/10.3389/fpls.2021.748523
60. Lockyer S., White A., Buttriss J.L. Biofortified crops for tackling micronutrient deficiencies - what impact are these having in developing countries and could they be of relevance within Europe? Nutr. Bull. 2018;43(4):319-357. https://doi.org/10.1111/nbu.12347
61. Ma X., Luo W., Li J., Wu F. Arbuscular mycorrhizal fungi increase both concentrations and bioavilability of Zn in wheat (Triticum aestivum L.) grain on Zn-spiked soils. Appl. Soil Ecol. 2019;135:91-97. https://doi.org/10.1016/j.apsoil.2018.11.007
62. Manickavelu A., Hattori T., Yamaoka S., Yoshimura K., Kondou Y., Onogi A., Matsui M., Iwata H., Ban T. Genetic nature of elemental contents in wheat grains and its genomic prediction: toward the effective use of wheat landraces from Afghanistan. PLoS One. 2017; 12(1):e0169416. https://doi.org/10.1371/journal.pone.0169416
63. Marschner H. Mineral Nutrition of Higher Plants. Acad. Press, 1995. https://doi.org/10.1016/C2009-0-02402-7
64. Mitrofanova O.P., Khakimova A.G. New genetic resources in wheat breeding for an increased grain protein content. Russ. J. Genet. Appl. Res. 2017;7(4):477-487. https://doi.org/10.1134/S2079059717040062
65. Monasterio I., Graham R.D. Breeding for trace minerals in wheat. Food Nutr. Bull. 2000;21(4):392-396. https://doi.org/10.1177/156482650002100409
66. Morgounov A., Li H., Shepelev S., Ali M., Flis P., Koksel H., Savin T., Shamanin V. Genetic characterization of spring wheat germplasm for macro-, microelements and trace metals. Plants. 2022;11(16): 2173. https://doi.org/10.3390/plants11162173
67. Murphy K.M., Reeves P.G., Jones S.S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica. 2008;163(3):381-390. https://doi.org/10.1007/s10681-008-9681-x
68. Niyigaba E., TwizerimanaA., Mugenzi I., Ngnadong W.A. Winter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizers. Agronomy. 2019;9(5):250. https://doi.org/10.3390/agronomy9050250
69. Oury F.X., Leenhardt F., Rémésy C., Chanliaud E., Duperrier B., Balfourier F., Charmet G. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur. J. Agron. 2006;25(2):177-185. https://doi.org/10.1016/j.eja.2006.04.011
70. Padhy A.K., Kaur P., Singh S., Kashyap L., Sharma A. Colored wheat and derived products: key to global nutritional security. Crit. Rev. Food Sci. Nutr. 2022;64(7):1894-1910. https://doi.org/10.1080/10408398.2022.2119366
71. Pasqualone A., Bianco A.M., Paradiso V.M., Summo C., Gambacorta G., Caponio F., Blanco A. Production and characterization of functional biscuits obtained from purple wheat. Food Chem. 2015; 180:64-70. https://doi.org/10.1016/j.foodchem.2015.02.025
72. Peleg Z., Saranga Y., Yazici A., Fahima T., Ozturk L., Cakmak I. Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil. 2008;306(1-2):57-67. https://doi.org/10.1007/s11104-007-9417-z
73. Peleg Z., Cakmak I., Ozturk L., Yazici A., Jun Y., Budak H., Korol A.B., Fahima T., Saranga Y. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor. Appl. Genet. 2009;119(2):353-369. https://doi.org/10.1007/s00122-009-1044-z
74. Peterson C.J., Jonson V.A., Mattern P.J. Influence of cultivar and environment on mineral and protein concentration of wheat flour, bran, and grain. Cereal Chem. 1986;63(3):183-186
75. Phuong L.M., Lachman J., Kotíková Z., Orsák M., Michlová T., Martinek P. Selenium in colour-grained winter wheat and spring tritordeum. Plant Soil Environ. 2017;63(7):315-321. https://doi.org/10.17221/259/2017-PSE
76. Potapova N.A., Timoshchuk A.N., Tiys E.S., Vinichenko N.A., Leonova I.N., Salina E.A., Tsepilov Y.A. Multivariate genome-wide association study of concentrations of seven elements in seeds reveals four new loci in Russian wheat lines. Plants. 2023;12(17): 12173019. https://doi.org/10.3390/plants12173019
77. Potapova N.A., Zlobin A.S., Leonova I.N., Salina E.A., Tsepilov Ya.A. The BLUP method in evaluation of breeding value of Russian spring wheat lines using micro- and macroelements in seeds. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2024;28(4):456-462. https://doi.org/10.18699/vjgb-24-51
78. Prashanth L., Kattapagari K., Chitturi R., Baddam V.R., Prasad L. A review on role of essential trace elements in health and disease. J. Dr. NTR Univ. Heal. Sci. 2015;4(2):75-85. https://doi.org/10.4103/2277-8632.158577
79. Pu Z.E., Yu M., He Q.Y., Chen G.Y., Wang J.R., Liu Y.X., Jiang Q.T., Li W., Dai S.F., Wei Y.M., Zheng Y.L. Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J. Integr. Agric. 2014;13(11):2322-2329. https://doi.org/10.1016/S2095-3119(13)60640-1
80. Qiao L., Wheeler J., Wang R., Isham K., Klassen N., Zhao W., Su M., Zhang J., Zheng J., Chen J. Novel quantitative trait loci for grain cadmium content identified in hard white spring wheat. Front. Plant Sci. 2021;12:756741. https://doi.org/10.3389/fpls.2021.756741
81. Rachoń L., Pałys E., Szumiło G. Comparison of the chemical composition of spring durum wheat grain (Triticum durum) and common wheat grain (Triticum aestivum ssp. vulgare). J. Elem. 2012;17(1): 105-114. https://doi.org/10.5601/jelem.2012.17.1.10
82. Rana A., Joshi M., Prasanna R., Shivay Y.S., Nain L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur. J. Soil Biol. 2012;50:118-126. https://doi.org/10.1016/j.ejsobi.2012.01.005
83. Rathan N.D., Krishna H., Ellur R.K., Sehgal D., Govindan V., Ahlawat A.K., Krishnappa G., Jaiswal J.P., Singh J.B., Sv S., Ambati D., Singh S.K., Bajpai K., Mahendru-Singh A. Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.). Sci. Rep. 2022;12(1):7037. https://doi.org/10.1038/s41598-022-10618-w
84. Salantur A., Karaoğlu C. Macro-microelements in wheat landraces and their use in breeding. In: Zencirci N., Baloch F.S., Habyarimana E., Chung G. (Eds.) Wheat Landraces. Cham: Springer, 2021;83-91. https://doi.org/10.1007/978-3-030-77388-5_5
85. Saquee F.S., Diakite S., Kavhiza N.J., Pakina E., Zargar M. The efficacy of micronutrient fertilizers on the yield formulation and quality of wheat grains. Agronomy. 2023;13(2):566. https://doi.org/10.3390/agronomy13020566
86. Savin T.V., Abugaliyeva A.I., Cakmak I., Kozhakhmetov K. Mineral composition of wild relatives and introgressive forms in wheat selection. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(1):88-96. https://doi.org/10.18699/VJ18.335 (in Russian)
87. Shamanin V.P., Flis P., Savin T.V., Shepelev S.S., Kuzmin O.G., Chursin A.S., Pototskaya I.V., Likhenko I.E., Kushnirenko I.Yu., Kazak A.A., Chudinov V.A., Shelaeva T.V., Morgounov A.I. Genotypic and ecological variability of zinc content in the grain of spring bread wheat varieties in the international nursery KASIB. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(5):543-551. https://doi.org/10.18699/VJ21.061
88. Shariatipour N., Heidari B., Tahmasebi A., Richards C. Comparative genomic analysis of quantitative trait loci associated with micronutrient contents, grain quality, and agronomic traits in wheat (Triticum aestivum L.). Front. Plant Sci. 2021;12:709817. https://doi.org/10.3389/fpls.2021.709817
89. Sharma N., Kumari A., Chunduri V., Kaur S., Banda J., Goyal A., Garg M. Anthocyanin biofortified black, blue and purple wheat exhibited lower amino acid cooking losses than white wheat. LWT - Food Sci. Technol. 2022;154:112802. https://doi.org/10.1016/j.lwt.2021.112802
90. Sharma S., Chunduri V., Kumar A., Kumar R., Khare P., Kondepudi K.K. Anthocyanin bio-fortified colored wheat: nutritional and functional characterization. PLoS One. 2018;13:e0194367. https://doi.org/10.1371/journal.pone.0194367
91. Shepelev S., Morgounov A., Flis P., Koksel H., Li H., Savin T., Sharma R., Wang J., Shamanin V. Variation of macro- and microelements, and trace metals in spring wheat genetic resources in Siberia. Plants. 2022;11(2):149. https://doi.org/10.3390/plants11020149
92. Shewry P.R. Wheat. J. Exp. Bot. 2009a;60(6):1537-1553. https://doi.org/10.1093/jxb/erp058
93. Shewry P.R. The HEALTHGRAIN programme opens new opportunities for improving wheat for nutrition and health. Nutr. Bull. 2009b; 34(2):225-231. https://doi.org/10.1111/j.1467-3010.2009.01747.x
94. Shewry P.R., Brouns F., Dunn J., Hood J., Burridge A.J., America A.H.P., Gilissen L., Proos-Huijsmans Z.A.M., van Straaten J.P., Jonkers D., Lazzeri P.A., Ward J.L., Lovegrove A. Comparative compositions of grain of tritordeum, durum wheat and bread wheat grown in multi-environment trials. Food Chem. 2023;423:136312. https://doi.org/10.1016/j.foodchem.2023.136312
95. Shi R., Zhang Y., Chen X., Sun Q., Zhang F., Römheld V., Zou C. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J. Cereal Sci. 2010; 51(1):165-170. https://doi.org/10.1016/j.jcs.2009.11.008
96. Shi X., Zhou Z., Li W., Qin M., Yang P., Hou J., Huang F., Lei Z., Wu Z., Wang J. Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 2022;22(1):229. https://doi.org/10.1186/s12870-022-03602-z
97. Shiferaw B., Smale M., Braun H.J., Duveiller E., Reynolds M., Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013;5(3):291-317. https://doi.org/10.1007/s12571-013-0263-y
98. Shoormij F., Mirlohi A., Saeidi G., Shirvani M. Combined foliar application of Zn and Fe increases grain micronutrient concentrations and alleviates water stress across diverse wheat species and ploidal levels. Sci. Rep. 2022;12(1):20328. https://doi.org/10.1038/s41598-022-24868-1
99. Singh R., Saripalli G., Gautam T., Kumar A., Jan I., Batra R., Kumar J., Kumar R., Balyan H.S., Sharma S., Gupta P.K. Meta-QTLs, ortho-MetaQTLs and candidate genes for grain Fe and Zn contents in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants. 2022; 28(3):637-650. https://doi.org/10.1007/s12298-022-01149-9
100. Srinivasa J., Arun B., Mishra V.K., Singh G.P., Velu G., Babu R., Vasistha N.K., Joshi A.K. Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theor. Appl. Genet. 2014; 127(7):1643-1651. https://doi.org/10.1007/s00122-014-2327-6
101. Stepien A., Wojtkowiak K. Effect of foliar application of Cu, Zn, and Mn on yield and quality indicators of winter wheat grain. Chil. J. Agric. Res. 2016;76(2):220-227. https://doi.org/10.4067/S0718-58392016000200012
102. Sun M., Luo Q., Zheng Q., Tong J., Wang Y., Song J., Zhang Y., Pu Z., Zheng J., Liu L., Zhou A., Rasheed A., Li M., Cao S., Xia X., He Z., Hao Y. Molecular characterization of stable QTL and putative candidate genes for grain zinc and iron concentrations in two related wheat populations. Theor. Appl. Genet. 2023;136:217. https://doi.org/10.1007/s00122-023-04467-y
103. Sun Z., Yue Z., Liu H., Ma K., Li C. Microbial-assisted wheat iron biofortification using endophytic Bacillus altitudinis WR10. Front. Nutr. 2021;8:704030. https://doi.org/10.3389/fnut.2021.704030
104. Tadesse W., Sanchez-Garcia M., Assefa S.G., Amri A., Bishaw Z., Ogbonnaya F.C., Baum M. Genetic gains in wheat breeding and its role in feeding the world. Crop Breed. Genet. Genom. 2019;1:e190005. https://doi.org/10.20900/cbgg20190005
105. Tadesse W., Gataa Z.E., Rachdad F.E., Baouchi A.E., Kehel Z., Ale-mu A. Single- and multi-trait genomic prediction and genome-wide association analysis of grain yield and micronutrient-related traits in ICARDA wheat under drought environment. Mol. Genet. Genomics. 2023;298(6):1515-1526. https://doi.org/10.1007/s00438-023-02074-6
106. Tian S.Q., Chen Z.C., Wei Y.C. Measurement of colour-grained wheat nutrient compounds and the application of combination technology in dough. J. Cereal Sci. 2018;83:63-67. https://doi.org/10.1016/j.jcs.2018.07.018
107. Tibbs Cortes L., Zhang Z., Yu J. Status and prospects of genome-wide association studies in plants. Plant Genome. 2021;14(1):20077. https://doi.org/10.1002/tpg2.20077
108. Tiwari V.K., Rawat N., Chhuneja P., Neelam K., Aggarwal R., Randhawa G.S., Dhaliwal H.S., Keller B., Singh K. Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J. Hered. 2009;100(6):771-776. https://doi.org/10.1093/jhered/esp030
109. Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science. 2006;314(5803):1298-1301. https://doi.org/10.1126/science.1133649
110. Van Der Kamp J.W., Poutanen K., Seal C.J., Richardson D.P. The HEALTHGRAIN definition of “whole grain”. Food Nutr. Res. 2014; 58(10):22100. https://doi.org/10.3402/fnr.v58.22100
111. Vasilova N.Z., Askhadullin D.F., Askhadullin D.F., Bagavieva E.Z., Tazutdinova M.R., Khusainova I.I. Violet-green variety of spring soft wheat Nadira. Zernobobovye i Krupyanye Kultury = Legumes and Groat Crops. 2021;4(40):66-75. https://doi.org/10.24412/2309-348X-2021-4-66-75 (in Russian)
112. Velu G., Ortiz-Monasterio I., Cakmak I., Hao Y., Singh R.P. Bio-fortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 2014;59(3):365-372. https://doi.org/10.1016/j.jcs.2013.09.001
113. Velu G., Singh R.P., Huerta J., Guzmán C. Genetic impact of Rht dwarfing genes on grain micronutrients concentration in wheat. Field Crop. Res. 2017a;214:373-377. https://doi.org/10.1016/j.fcr.2017.09.030
114. Velu G., Singh R.P., Cardenas M.E., Wu B., Guzman C., Ortiz-Monasterio I. Characterization of grain protein content gene (GPC¬B1) introgression lines and its potential use in breeding for enhanced grain zinc and iron concentration in spring wheat. Acta Physiol. Plant. 2017b;39(9):212. https://doi.org/10.1007/s11738-017-2509-3
115. Velu G., Tutus Y., Gomez-Becerra H.F., Hao Y., Demir L., Kara R., Crespo-Herrera L.A., Orhan S., Yazici A., Singh R.P., Cakmak I. QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. Plant Soil. 2017c;411(1-2):81-99. https://doi.org/10.1007/s11104-016-3025-8
116. Verma S., Chakdar H., Kumar M., Varma A., Saxena A.K. Microorganisms as a sustainable alternative to traditional biofortification of iron and zinc: status and prospect to combat hidden hunger. J. Soil Sci. Plant Nutr. 2021;21(2):1700-1717. https://doi.org/10.1007/s42729-021-00473-5
117. Vincent J.B. New evidence against chromium as an essential trace element. J. Nutr. 2017;147(12):2212-2219. https://doi.org/10.3945/jn.117.255901
118. Wang P., Wang H., Liu Q., Tian X., Shi Y., Zhang X. QTL mapping of selenium content using a RIL population in wheat. PLoS One. 2017;12(9):e0184351. https://doi.org/10.1371/journal.pone.0184351
119. Wang S., Yin L., Tanaka H., Tanaka K., Tsujimoto H. Wheat-Aegilops chromosome addition lines showing high iron and zinc contents in grains. Breed. Sci. 2011;61(2):189-195. https://doi.org/10.1270/jsbbs.61.189
120. Wang W., Guo H., Wu C., Yu H., Li X., Chen G., Tian J., Deng Z. Identification of novel genomic regions associated with nine mineral elements in Chinese winter wheat grain. BMC Plant Biol. 2021; 21(1):311. https://doi.org/10.1186/s12870-021-03105-3
121. Wang Y., Xu X., Hao Y., Zhang Y., Liu Y., Pu Z., Tian Y., Xu D., Xia X., He Z., Zhang Y. QTL mapping for grain zinc and iron concentrations in bread wheat. Front. Nutr. 2021;8:680391. https://doi.org/10.3389/fnut.2021.680391
122. Xia Q., Yang Z., Shui Y., Liu X., Chen J., Khan S., Wang J., Gao Z. Methods of selenium application differentially modulate plant growth, selenium accumulation and speciation, protein, anthocyanins and concentrations of mineral elements in purple-grained wheat. Front. Plant Sci. 2020;11:1114. https://doi.org/10.3389/fpls.2020.01114
123. Yadav R., Ror P., Rathore P., Ramakrishna W. Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification. Plant Physiol. Biochem. 2020;150:222-233. https://doi.org/10.1016/j.plaphy.2020.02.039
124. Zeibig F., Kilian B., Frei M. The grain quality of wheat wild relatives in the evolutionary context. Theor. Appl. Genet. 2022;135(11):4029-4048. https://doi.org/10.1007/s00122-021-04013-8
125. Zeibig F., Kilian B., Özkan H., Pantha S., Frei M. Grain quality traits within the wheat (Triticum spp.) genepool: prospects for improved nutrition through de novo domestication. J. Sci. Food Agric. 2024; 104(7):4400-4410. https://doi.org/10.1002/jsfa.13328
126. Zhao F.J., Su Y.H., Dunham S.J., Rakszegi M., Bedo Z., McGrath S.P., Shewry P.R. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 2009;49(2):290-295. https://doi.org/10.1016/j.jcs.2008.11.007
127. Zou C.Q., Zhang Y.Q., Rashid A., Ram H., Savasli E., Arisoy R.Z., Ortiz-Monasterio I., Simunji S., Wang Z.H., Sohu V., Hassan M., Kaya Y., Onder O., Lungu O., Mujahid M.Y., Joshi A.K., Zelenskiy Y., Zhang F.S., Cakmak I. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil. 2012; 361(1-2):119-130. https://doi.org/10.1007/s11104-012-1369-2