Использование генетического потенциала родов Thinopyrum и Agropyron для защиты пшеницы от болезней и абиотических стрессов
https://doi.org/10.18699/vjgb-24-60
Аннотация
Мягкая пшеница – одна из важнейших продовольственных культур в мире. Сборы ее зерна можно увеличить, сократив потери от болезней и стрессов окружающей среды. Третичный генофонд, включая виды рода Thinopyrum, является ценным ресурсом для увеличения генетического разнообразия и повышения устойчивости пшеницы к грибным заболеваниям и абиотическим стрессам. Отдаленная гибридизация между пшеницей и Thinopyrum spp. была начата в 1920-х гг. в России и позднее продолжена в разных странах. Основные результаты получены с использованием видов Th. ponticum и Th. intermedium. Дополнительно был создан интрогрессивный материал на основе видов Th. elongatum, Th. bessarabicum, Th. junceiforme, Agropyron cristatum.
В статье приведен обзор результатов применения генетического материала видов рода Thinopyrum для повышения устойчивости пшеницы к болезням (бурой, стеблевой и желтой ржавчине, мучнистой росе, фузариозу колоса и септориозным пятнистостям) и абиотическим стрессам (засухе, экстремальным температурам и засолению). Описаны подходы к улучшению агрономических свойств интрогрессивного селекционного материала (применение радиации, ph-мутантов и компенсирующих робертсоновских транслокаций). Проанализирован опыт длительной защиты пшеницы от листовой и стеблевой ржавчины в мире с помощью ряда генов третичного генофонда. Вид Th. ponticum является нехозяином для Puccinia triticina (Ptr) и P. graminis f. sp. tritici(Pgt) и подавляет развитие ржавчинных грибов на поверхности растений. Образцы пшеницы с пырейными генами Lr19, Lr38, Sr24, Sr25 и Sr26 проявляют защитные механизмы, сходные с механизмами нехозяев, что приводит к нарушению развития поверхностных инфекционных структур и гибели грибов при попытке внедрения в устьица (прегаусториальная устойчивость или устьичный иммунитет). Очевидно, изменение химических свойств поверхностных структур рас, вирулентных к Lr19, Lr24, Sr24, Sr25 и Sr26, приводит к снижению их приспособленности к среде, что влияет на длительность устойчивости сортов к ржавчинным болезням. Чужеродные гены с аналогичным эффектом представляют интерес для селекции сортов с длительной устойчивостью к ржавчинным заболеваниям, а также конструирования культуры с помощью молекулярных технологий.
Об авторах
Л. Я. ПлотниковаРоссия
Омск
В. В. Кнауб
Россия
Омск
Список литературы
1. Ali N., Mujeeb-Kazi A. Food production: global challenges to mitigate climate change. In: Physiological, Molecular, and Genetic Perspectives of Wheat Improvement. 2021;1-13. https://doi.org/10.1007/978-3-030-59577-7_1
2. Ali S., Rodriguez-Algaba J., Thach T., Sørensen C.K., Hansen J.G., Lassen P., Nazari K., Hodson D.P., Justesen A.F., Hovmøller M.S. Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front. Plant Sci. 2017;8:1057. https://doi.org/10.3389/fpls.2017.01057
3. Alisaac E., Mahlein A.-K. Fusarium head blight on wheat: biology, modern detection and diagnosis and integrated disease management. Toxins. 2023;15(3):192. https://doi.org/10.3390/toxins15030192
4. Antonovics J., Alexander H.M. The concept of fitness in plant-fungal pathogen systems. In: Leonard K.J., Fry W.E. (Eds.) Plant Disease Epidemiology. New York: McGraw-Hill, 1989;2:185-214
5. Aravindh R., Sivasamy M., Ganesamurthy K., Jayaprakash P., Gopalakrishnan C., Geetha M., Nisha R., Shajitha P., Peter J., Sindhu P.A., Vikas V.K. Marker assisted stacking/pyramiding of stem rust, leaf rust and powdery mildew disease resistance genes (Sr2/ Lr27/Yr30, Sr24/Lr24 and Sr36/Pm6) for durable resistance in wheat (Triticum aestivum L.). Electron. J. Plant Breed. 2020;11(3):907-991. https://doi.org/10.37992/2020.1103.148
6. Arora S., Steuernagel B., Gaurav K., Chandramohan S., Long Y., Matny O., Johnson R., Enk J., Periyannan S., Singh N., … Bentley A.R., Ayliffe M., Olson E., Xu S.S., Steffenson B.J., Lagudah E., Wulff B.B.H. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 2019; 37(2):139-143. https://doi.org/10.1038/s41587-018-0007-9
7. Babkenova S.A., Babkenov A.T., Pakholkova E.V., Kanafin B.K. Pathogenic complexity of Septoria spot disease of wheat in northern Kazakhstan. Plant Sci. Today. 2020;7(4):601-606. https://doi.org/10.14719/pst.2020.7.4.798
8. Bajgain P., Zhang X., Jungers J.M., DeHaan L.R., Heim B., Sheaf-fer C.C., Wyse D.L., Anderson J.A. ‘MN-Clearwater’, the first food-grade intermediate wheatgrass (Kernza perennial grain) cultivar. J. Plant Regist. 2020;14(3):288-297. https://doi.org/10.1002/plr2.20042
9. Baker L., Grewal S., Yang C., Hubbart-Edwards S., Scholefield D., Ashling S., Burridge A., Przewieslik-Allen A., Wilkinson P., King I., King J. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. Theor. Appl. Genet. 2020;133(7): 2213-2226. https://doi.org/10.1007/s00122-020-03591-3
10. Baranova O., Solyanikova V., Kyrova E., Konkova E., Gaponov S., Sergeev V., Shevchenko S., Mal’chikov P., Dolzhenko D., Bespalova L., Ablova I., Tarhov A., Vasilova N., Askhadullin D., Askhadullin D., Sibikeev S.N. Evaluation of resistance to stem rust and identification of Sr genes in Russian spring and winter wheat cultivars in the Volga region. Agriculture. 2023;13(3):635. https://doi.org/10.3390/agriculture13030635
11. Bhardwaj S.C., Prashar M., Kumar M., Jain S.K., Datta D. Lr19 resistance in wheat becomes susceptible to Puccinia triticina in India. Plant Dis. 2005;89(12):1360. https://doi.org/10.1094/PD-89-1360A
12. Bhavani S., Hodson D.P., Huerta-Espino J., Randhawa M.S., Singh R.P. Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. Front. Agric. Sci. Eng. 2019;6(3):210-224. https://doi.org/10.15302/J-FASE-2019268
13. Brar G.S., Fetch T., McCallum B.D., Hucl P.J., Kutcher H.R. Virulence dynamics and breeding for resistance to stripe, stem, and leaf rust in Canada since 2000. Plant Dis. 2019;103(12):2981-2995. https://doi.org/10.1094/PDIS-04-19-0866-FE
14. Carmona M.A., Ferrazini M., Barreto D.E. Tan spot of wheat caused by Drechslera tritici-repentis: detection, transmission, and control in wheat seed. Cereal Res. Commun. 2006;34(2-3):1043-1049. https://doi.org/10.1556/CRC.34.2006.2-3.236
15. Ceoloni C., Kuzmanović L., Forte P., Gennaro A., Bitti A. Targeted exploitation of gene pools of alien Triticeae species for sustainable and multi-faceted improvement of the durum wheat crop. Crop Pasture Sci. 2014;65(1):96-111. https://doi.org/10.1071/CP13335
16. Ceoloni C., Forte P., Kuzmanović L., Tundo S., Moscetti I., De Vita P., Virili M.E., D’Ovidio R. Cytogenetic mapping of a major locus for resistance to Fusarium headblight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL. Theor. Appl. Genet. 2017;130(10):2005-2024. https://doi.org/10.1007/s00122-017-2939-8
17. Chen C., Han Y., Xiao H., Zou B., Wu D., Sha L., Yang C., Liu S., Cheng Y., Wang Y., Kang H., Fan X., Zhou Y., Zhang T., Zhang H. Chromosome-specific painting in Thinopyrum species using bulked oligonucleotides. Theor. Appl. Genet. 2023;136(8):177. https://doi.org/10.1007/s00122-023-04423-w
18. Chen Q., Conner R.L., Laroche A. Identification of the parental chromosomes of the wheat-alien amphiploid agrotana by genomic in situ hybridization. Genome. 1995;38(6):1163-1169. https://doi.org/10.1139/g95-154
19. Chen Q., Conner R.L., Laroche A., Thomas J.B. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome. 1998;41(4):580-586. https://doi.org/10.1139/g98-055
20. Chen S., Huang Z., Dai Y., Qin Y., Zhang L., Gao Y., Chen J. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS One. 2013;8(6):e65122. https://doi.org/10.1371/journal.pone.0065122
21. Chen X.M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol. 2005;27:314-337. https://doi.org/10.1080/07060660509507230
22. Colmer T.D., Flowers T.J., Munns R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 2006;57(5):1059-1078. https://doi.org/10.1093/jxb/erj124
23. Curtis T., Halford N.G. The challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 2014;164(3):354-372. https://doi.org/10.1111/aab.12108
24. Davoyan R.O., Bebyakina I.V., Davoyan E.R., Zinchenco A.N., Zubanova Y.S., Mikov D.S. Introgression of common wheat lines with genetic material of Agropyron glaucum. Russ. J. Genet. Appl. Res. 2016;6(1):54-61. https://doi.org/10.1134/S2079059716010056
25. FAO Report. The impact of disasters and crises on agriculture and food security. Rome: FAO, 2021. https://doi.org/10.4060/cb3673en
26. Fedak G., Chen Q., Conner R.L., Laroche A., Petroski R., Arm-strong K.W. Characterization of wheat-Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization. Genome. 2000;43(4):712-719. https://doi.org/10.1139/g00-027
27. Fisenko A.V., Kuzmina N.P. Remote hybridization of wheat in winter hardiness selection. Agrarnaya Rossiya = Agricultural Russia. 2020;5:3-8. https://doi.org/10.30906/1999-5636-2020-5-3-8 (in Russian)
28. Fones H., Gurr S. The impact of Septoria tritici Blotch disease on wheat: an EU perspective. Fungal Genet. Biol. 2015;79:3-7. https://doi.org/10.1016/j.fgb.2015.04.004
29. Frailie T.B., Innes R.W. Engineering healthy crops: molecular strategies for enhancing the plant immune system. Curr. Opin. Biotechnol. 2021;70:151-157. https://doi.org/10.1016/j.copbio.2021.04.006
30. Friebe B., Jiang J., Knott D.R., Gill B.S. Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci. 1994;34(2): 400-404. https://doi.org/10.2135/cropsci1994.0011183X003400020018x
31. Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat-alien translocations resistance to diseases and pest: current status. Euphytica. 1996;91:59-87. https://doi.org/10.1007/BF00035277
32. Friebe B., Raupp W.J., Gill B.S. Wheat alien translocation lines. Ann. Wheat Newslett. 2000;46:198-202
33. Friebe B., Zhang P., Linc G., Gill B.S. Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet. Genome Res. 2005;109(1-3):293-297. https://doi.org/10.1159/000082412
34. Gao P., Zhou Y., Gebrewahid T.W., Zhang P., Yan X., Li X., Yao Z., Li Z., Liu D. Identification of known leaf rust resistance genes in common wheat cultivars from Sichuan province in China. Crop Protect. 2019;115:122-129. https://doi.org/10.1016/j.cropro.2018.09.012
35. Gill B.S., Friebe B., Wilson D.L., Cox T.S. Registration of KS93WGRC27 wheat streak mosaic virus-resistant T4DL·4Ai#2S wheat germplasm. Crop Sci. 1995;35(4):1236-1237. https://doi.org/10.2135/cropsci1995.0011183X003500040100x
36. Goncharov N.P. Scientific support to plant breeding and seed production in Siberia in the XXI century. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(4): 448-459. https://doi.org/10.18699/VJ21.050
37. Gorham J., Forster B.P., Budrewicz E., Wyn J.R.G., Miller T.E., Law C.N. Salt tolerance in the Triticeae: solute accumulation and distribution in an amphidiploid derived from Triticum aestivum cv. Chinese Spring and Thinopyrum bessarabicum. J. Exp. Bot. 1986;37(10):1435-1449. https://doi.org/10.1093/jxb/37.10.1435
38. Gultyaeva E., Shaydayuk E., Gannibal P. Leaf rust resistance genes in wheat cultivars registered in Russia and their influence on adaptation processes in pathogen populations. Agriculture. 2021;11(4): 319. https://doi.org/10.3390/agriculture11040319
39. Gultyaeva E., Shaydayuk E., Kosman E. Virulence diversity of Puccinia striiformis f. sp. tritici in common wheat in Russian regions in 2019-2021. Agriculture. 2022;12(11):1957. https://doi.org/10.3390/agriculture12111957
40. Gultyaeva E., Gannibal P., Shaydayuk E. Long-term studies of wheat leaf rust in the north-western region of Russia. Agriculture. 2023; 13(2):255. https://doi.org/10.3390/agriculture13020255
41. Guo J., Yu X., Yin H., Liu G., Li A., Wang H., Kong L. Phylogenetic relationships of Thinopyrum and Triticum species revealed by SCoT and CDDP markers. Plant Syst. Evol. 2016;302:1301-1309. https://doi.org/10.1007/s00606-016-1332-4
42. Guo X., Huang Y., Wang J., Fu S., Wang C., Wang M., Zhou C., Hu X., Wang T., Yang W., Han F. Development and cytological characterization of wheat-Thinopyrum intermedium translocation lines with novel stripe rust resistance gene. Front. Plant Sci. 2023;14:1135321. https://doi.org/10.3389/fpls.2023.1135321
43. Han H., Ma X., Wang Z., Qi K., Yang W., Liu W., Zhang J., Zhou S., Lu Y., Yang X., Li X., Li L. Chromosome 5P of Agropyron cristatum induces chromosomal translocation by disturbing homologous chromosome pairing in a common wheat background. Crop J. 2023;11(1):228-237. https://doi.org/10.1016/j.cj.2022.06.002
44. Hang A., Bockelman H.E., Burton C.S. Cytological and seed morphological investigation of 250 accessions from the W.J. Sando collection. Agronomy Society of America, Crop Science Society of America, Soil Science Society of America meeting, November 6−10, 2005. Salt Lake City, Utah, 2005
45. Hao M., Zhang L., Ning S., Huang L., Yuan Z., Wu B., Yan Z., Dai S., Jiang B., Zheng Y., Liu D. The resurgence of introgression breeding, as exemplified in wheat improvement. Front. Plant Sci. 2020;11: 252. https://doi.org/10.3389/fpls.2020.00252
46. Hassani H.S., King I.P., Reader S.M., Caligari P.D.S., Miller T.E. Can tritipyrum, a new salt tolerant potential amphiploid, be a successful cereal like triticale? J. Agric. Sci. Technol. 2000;2(3):177-195
47. He F., Wang Y.H., Bao Y.G., Ma Y.X., Wang X., Li X.F., Wang X. Chromosomal constitutions of five wheat-Elytrigia elongata partial amphiploids as revealed by GISH, multicolor GISH and FISH. Comp. Cyogen. 2017;11(3):525-540. https://doi.org/10.3897/CompCytogen.v11i3.11883
48. He R.L., Chang Z.J., Yang Z.J., Yuan Z.Y., Zhan H.X., Zhang X.J., Liu J.X. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor. Appl. Genet. 2009;118(6):1173-1180. https://doi.org/10.1007/s00122-009-0971-z
49. Hohmann U., Badaeva K., Busch W., Friebe B., Gill B.S. Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome. 1996;39(2):336-347. https://doi.org/10.1139/g96-044
50. Hou L., Jia J., Zhang X., Li X., Yang Z., Ma J., Guo H., Zhan H., Qiao L., Chang Z. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Dis. 2016;100(8):1717-1724. https://doi.org/10.1094/PDIS-05-15-0555-RE
51. Huang Q., Li X., Chen W., Xiang Z., Zhong S., Chang Z., Zhang M., Zhang H.Y., Tan F.Q., Ren Z.L., Luo P.G. Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor. Appl. Genet. 2014;127(4):843-853. https://doi.org/10.1007/s00122-014-2261-7
52. Huerta-Espino J., Singh R.P. First report on virulence in wheat with leaf rust resistance gene Lr19 in Mexico. Plant Dis. 1994;78:640. https://doi.org/10.1094/PD-78-0640C
53. Jiang B., Liu T., Li H., Han H., Li L., Zhang J., Yang X., Zhou S., Li X., Liu W. Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Front. Plant Sci. 2018;9:817. https://doi.org/10.3389/fpls.2018.00817
54. Jin Y., Szabo L.J., Pretorius Z.A., Singh R.P., Ward R., Fetch T., Jr. Detection of virulence to resistance gene Sr24 with in race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 2008;92(6):923-926. https://doi.org/10.1094/PDIS-92-6-0923
55. Johnson R. Genetic background of durable resistance. In: Lamberti F., Waller J.M., Vander Graaff N.A. (Eds.) Durable Resistance in Crops. New York: Plenum Press, 1983;152-163
56. Knott D.R. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can. J. Genet. Cytol. 1968;10(3):695-696. https://doi.org/10.1139/g68-087
57. Kocheshkova A.A., Kroupin P.Y., Bazhenov M.S., Karlov G.I., Pochtovyy A.A., Upelniek V.P., Belov V.I., Divashuk M.G. Pre-harvest sprouting resistance and haplotype variation of ThVp-1 gene in the collection of wheat-wheatgrass hybrids. PLoS One. 2017;12(11): e0188049. https://doi.org/10.1371/journal.pone.0188049
58. Kolmer J. Leaf rust of wheat: pathogen biology, variation and host resistance. Forests. 2013;4(1):70-84. https://doi.org/10.3390/f4010070
59. Kolmer J.A., Jin Y., Long D.L. Wheat leaf and stem rust in the United States. Aust. J. Agric. Res. 2007;58(6):631-638. https://doi.org/10.1071/AR07057
60. Kosová K., Vítámvás P., Urban M.O., Kholová J., Prášil I.T. Breeding for enhanced drought resistance in barley and wheat - drought-associated traits, genetic resources and their potential utilization in breeding programmes. Czech J. Gen. Pl. Breed. 2014;50(4):247-261. https://doi.org/10.17221/118/2014-CJGPB
61. Kroupin P.Y., Kuznetsova V.M., Nikitina E.A., Martirosyan Y.T., Karlov G.I., Divashuk M.G. Development of new cytogenetic markers for Thinopyrum ponticum (Podp.) Z.-W. Liu & R.-C. Wang. Comp. Cytogenet. 2019;13(3):231-243. https://doi.org/10.3897/CompCytogen.v13i3.36112
62. Kumar A., Choudhary A., Kaur H., Mehta S. A walk towards wild grasses to unlock the clandestine of gene pools for wheat improvement: a review. Plant Stress. 2022;3:100048. https://doi.org/10.1016/j.stress.2021.100048
63. Kuzmanović L., Ruggeri R., Virili M.E., Rossini F., Ceoloni C. Effects of Thinopyrum ponticum chromosome segments transferred into durum wheat on yield components and related morpho-physiological traits in Mediterranean rain-fed conditions. Field Crops Res. 2016; 186:86-98. https://doi.org/10.1016/j.fcr.2015.11.007
64. Kuzmanović L., Rossini F., Ruggeri R., Pagnotta M.A., Ceoloni C. Engineered durum wheat germplasm with multiple alien introgressions: agronomic and quality performance agronomy. Agronomy. 2020;10(4):486. https://doi.org/10.3390/agronomy10040486
65. Lammer D., Cai X.W., Li H., Arterburn M., Chatelain J., Greco A., Lyon S., Gollnick M., Murrar T.D., Jones S.S. Utilization of Thynopyrum spp. in breeding winter wheat for disease resistance, stress tolerance, and perennial habit. In: Increasing Wheat Production in Central Asia through Science and International Cooperation. Proc. 1st Central Asian Wheat Conf. Almaty, Kazakhstan, 10-13 June, 2003. Almaty, 2005;147-151
66. Lang T., La S., Li B., Yu Z., Chen Q., Li J., Yang E., Li G., Yang Z. Precise identification of wheat-Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome. 2018;61(3):177-185. https://doi.org/10.1139/gen-2017-0229
67. Leonova I.N. Influence of alien genetic material on the manifestation of agronomically important traits of common wheat (T. aestivum L.). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(3):321-328. https://doi.org/10.18699/VJ18.367 (in Russian)
68. Li H., Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J. Genet. Genomics. 2009;36(9):557-565. https://doi.org/10.1016/S1673-8527(08)60147-2
69. Li H., Boshoff W.H.P., Pretorius Z.A., Zheng Q., Li B., Li Z. Establishment of wheat-Thinopyrum ponticum translocation lines with resistance to Puccinia graminis f. sp. tritici Ug99. J. Genet. Genom. 2019;46(8):405-407. https://doi.org/10.1016/j.jgg.2019.07.005
70. Li M.Z., Wang Y.Z., Liu X.J., Li X.F., Wang H.G., Bao Y.G. Molecular cytogenetic identification of a novel wheat-Th. ponticum 1Js (1B) substitution line resistant to powdery mildew and leaf rust. Front. Plant Sci. 2021;12:727734. https://doi.org/10.3389/fpls.2021.727734
71. Li M.Z., Yuan Y.Y., Ni F., Li X.F., Wang H.G., Bao Y.G. Characterization of two wheat-Thinopyrum ponticum introgression lines with pyramiding resistance to powdery mildew. Front. Plant Sci. 2022; 13:943669. https://doi.org/10.3389/fpls.2022.943669
72. Li W., Zhang Q., Wang S., Langham M.A., Singh D., Bowden R.L., Xu S.S. Development and characterization of wheat-sea wheatgrass (Thinopyrum junceiforme) amphiploids for biotic stress resistance and abiotic stress tolerance. Theor. Appl. Gen. 2019;132(1):163-175. https://doi.org/10.1007/s00122-018-3205-4
73. Li X., Jiang X., Chen X., Song J., Ren C., Xiao Y., Gao X., Ru Z. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance. PLoS One. 2017;12(9):e0184462. https://doi.org/10.1371/journal.pone.0184462
74. Li Z.S., Li B., Tong Y.P. The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J. Genet. Genomics. 2008;35(8):451-456. https://doi.org/10.1016/S1673-8527
75. (08)60062-4 Liu J., Chang Z., Zhang X., Yang Z., Li X., Jia J., Zhan H., Guo H., Wang J. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor. Appl. Genet. 2013;126(1):265-274. https://doi.org/10.1007/s00122-012-1979-3
76. Liu L.Q., Luo Q.L., Li H.W., Li B., Li Z.S., Zheng Q. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor. Appl. Genet. 2018;131(11):2359-2370. https://doi.org/10.1007/s00122-018-3158-7
77. Liu W., Jin Y., Rouse M., Friebe B., Gill B., Pumphrey M.O. Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor. Appl. Genet. 2011a;122(8):1537-1545. https://doi.org/10.1007/s00122-011-1553-4
78. Liu W., Rouse M., Friebe B., Jin Y., Gill B., Pumphrey M.O. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res. 2011b;19(5):669-682. https://doi.org/10.1007/s10577-011-9226-3
79. Liu W., Danilova T.V., Rouse M.N., Bowden R.L., Friebe B., Gill B.S., Pumphrey M.O. Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor. Appl. Genet. 2013;126(5):1167-1177. https://doi.org/10.1007/s00122-013-2044-6
80. Liu X., Ao K., Yao J., Zhang Y., Li X. Engineering plant disease resistance against biotrophic pathogens. Curr. Opin. Plant Biol. 2021;60: 101987. https://doi.org/10.1016/j.pbi.2020.101987
81. Luo P., Hu X., Chang Z., Zhang M., Zhang H., Ren Z. A new stripe rust resistance gene transferred from Thinopyrum intermedium to hexaploid wheat (Triticum aestivum). Phytoprotection. 2009a;90(2): 57-63. https://doi.org/10.7202/044023ar
82. Luo P.G., Luo H.Y., Chang Z.J., Zhang H.Y., Zhang M., Ren Z.L. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet. 2009b;118(6):1059-1064. https://doi.org/10.1007/s00122-009-0962-0
83. Ma F.F., Xu Y.F., Ma Z.Q., Li L.H., An D.G. Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol. Breed. 2018;38:91. https://doi.org/10.1007/s11032-018-0837-7158
84. Martynov S.P., Dobrotvorskaya T.V., Krupnov V.A. Genealogical analysis of the use of two wheatgrass (Agropyron) species in common wheat (Triticum aestivum L.) breeding for disease resistance. Russ. J. Genet. 2016;52(2):154-163. https://doi.org/10.1134/S1022795416020071
85. McDonald B.A., Stukenbrock E.H. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016; 371(1709):20160026. https://doi.org/10.1098/rstb.2016.0026
86. McIntosh R.A., Wellings C.R., Park R.F. (Eds.) Wheat Rusts. An Atlas of Resistance Genes. Springer Dordrecht, 1995. https://doi.org/10.1071/9780643101463
87. McIntosh R.A., Dubcovsky J., Rogers W.J., Xia X.C., Raupp W.J. Catalogue of gene symbols for wheat: 2018 Supplement. Ann. Wheat Newslett. 2018;64:73-93
88. Melotto M., Zhang L., Oblessuc P.R., He S.Y. Stomatal defense a decade later. Plant Physiol. 2017;174(2):561-571. https://doi.org/10.1104/pp.16.01853
89. Meshkova L.V., Rosseeva L.P., Korenyuk E.A., Belan I.A. Dynamics of distribution of the wheat leaf rust pathotypes virulent to the cultivars with Lr9 gene in Omsk region. Mikologiya i Fitopatologiya = Mycology and Phytopathology. 2012;46(6):397-400 (in Russian)
90. Mo Q., Wang C.Y., Chen C.H., Wang Y.J., Zhang H., Liu X.L., Ji W.Q. Molecular cytogenetic identification of a wheat Thinopyrum ponticum substitution line with stripe rust resistance. Cereal Res. Com-mun. 2017;45(4):564-573. https://doi.org/10.1556/0806.45.2017.037
91. Niks R.E. How specific is non-hypersensitive host and nonhost resistance of barley to rust and mildew fungi? J. Integr. Agric. 2014; 13(2):244-254. https://doi.org/10.1016/S2095-3119(13)60648-6
92. Niu Z., Klindworth D.L., Yu G., Friessen T.L., Chao S., Jin Y., Cai X., Ohm J.-B., Rasmussen J.B., Xu S.S. Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor. Appl. Genet. 2014;127(4):969-980. https://doi.org/10.1007/s00122-014-2272-4
93. O’Driscoll A., Kildea S., Doohan F., Spink J., Mullins E. The wheat-Septoria conflict: a new front opening up? Trends Plant Sci. 2014; 19(9):602-610. https://doi.org/10.1016/j.tplants.2014.04.011
94. Ohm H.W., Anderson J.M., Sharma H.C., Ayala L., Thompson N., Uphaus J.J. Registration of yellow dwarf viruses resistant wheat germplasm line P961341. Crop Sci. 2005;45(2):805-806. https://doi.org/10.2135/cropsci2005.0805
95. Oliver R.E., Xu S.S., Stack R.W., Friesen T.L., Jin Y., Cai X. Molecular cytogenetic characterization of four partial wheat-Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot, and Stagonospora nodorum blotch. Theor. Appl. Genet. 2006;112(8):1473-1479. https://doi.org/10.1007/s00122-006-0250-1
96. Park R.F., Bariana H.S., Wellings C.R., Wallwork H. Detection and occurrence of a new pathotype of Puccinia triticina with virulence for Lr24 in Australia. Aust. J. Agric. Res. 2002;53(9):1069-1076. https://doi.org/10.1071/AR02018
97. Pathotype Tracker - Where is Ug99? 2023. Available at: https://rusttracker.cimmyt.org/?page_id=22
98. Patpour M., Hovmøller M.S., Rodriguez-Algaba J., Randazzo B., Villegas D., Shamanin V.P., Berlin A., Flath K., Czembor P., Hanzalova A., Sliková S., Skolotneva E.S., Jin Y., Szabo L., Meyer K.J.G., Valade R., Thach T., Hansen J.G., Justesen A.F. Wheat stem rust back in Europe: diversity, prevalence and impact on host resistance. Front. Plant Sci. 2022;13:882440. https://doi.org/10.3389/fpls.2022.882440
99. Peng Y., Wersch R., Zhang Y. Convergent and divergent signaling in pamp-triggered immunity and effector-triggered immunity. Mol. Plant Microbe Interact. 2018;31(4):403-409. https://doi.org/10.1094/MPMI-06-17-0145-CR
100. Peto F.H. Hybridization of Triticum and Agropyron. II. Cytology of the male parents and F1 generation. Can. J. Res. 1936;14(5):203-214. https://doi.org/10.1139/cjr36c-017
101. Phuke R.M., He X., Juliana P., Bishnoi S.K., Singh G.P., Kabir M.R., Roy K.K., Joshi A.K., Singh R.P., Singh P.K. Association mapping of seedling resistance to tan spot (Pyrenophora tritici¬repentis Race 1) in CIMMYT and South Asian wheat germplasm. Front. Plant Sci. 2020;11:1309. https://doi.org/10.3389/fpls.2020.01309
102. Plotnikova L.Ya. Influence of the surface features and physiological reactions of non-host species on the development of cellular structures of rust fungi. Tsitologiya = Cytology. 2008;50(5):439-446 (in Russian)
103. Plotnikova L.Ya. The involvement of reactive oxygen species in defense of wheat lines with the genes introgressed from Agropyron species contributing the resistance against brown rust. Russ. J. Plant Physiol. 2009;56(2):181-189. https://doi.org/10.1134/S102144370902006X
104. Plotnikova L.Ya., Aidosova A.T., Rispekova A.N., Myasnikov A.Yu. Introgressive lines of common wheat with genes of wheat grass Agropyron elongatum resistant to leaf diseases in the South West Siberia. Vestnik OmGAU = OmskSAU Bull. 2014;4(16):3-7 (in Russian)
105. Plotnikova L.Ya., Meshkova L.V., Gultyaeva E.I., Mitrofanova O.P., Lapochkina I.F. A tendency towards leaf rust resistance decrease in common wheat introgression lines with genetic material from Aegilops speltoides Tausch. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(5):560-567. https://doi.org/10.18699/VJ18.395 (in Russian)
106. Plotnikova L.Ya., Sagendykova A.T., Ignatyeva E.Y. Defence of bread wheat with the tall wheatgrass genes while accelerating the physiological specialization of the causative agent of stem rust. Vestnik OmGAU = OmskSAU Bull. 2021;4:35-44. https://doi.org/10.48136/2222-0364_2021_4_35 (in Russian)
107. Plotnikova L.Ya., Pozherukova V., Knaub V., Kashuba Y. What was the reason for the durable effect of Sr31 against wheat stem rust? Agriculture. 2022;12(12):2116. https://doi.org/10.3390/agriculture12122116
108. Plotnikova L.Ya., Knaub V., Pozherukova V. Nonhost resistance of Thinopyrum ponticum to Puccinia graminis f. sp. tritici and the effects of the Sr24, Sr25, and Sr26 genes introgressed to wheat. Int. J. Plant Biol. 2023a;14(2):435-457. https://doi.org/10.3390/ijpb14020034
109. Plotnikova L.Ya., Sagendykova A., Pozherukova V. The use of genetic material of tall wheatgrass to protect common wheat from Septoria blotch in Western Siberia. Agriculture. 2023b;13(1):203. https://doi.org/10.3390/agriculture13010203
110. Plotnikova L.Ya., Sagendykova A.T., Kuzmina S.P. Drought resistance of introgressive spring common wheat lines with genetic material of tall wheatgrass. Proceedings on Applied Botany, Genetics and Breeding. 2023c;184(2):38-50. https://doi.org/10.30901/2227-8834-2023-2-38-50
111. Pototskaya I.V., Shamanin V.P., Aydarov A.N., Morgounov A.I. The use of wheatgrass (Thinopyrum intermedium) in breeding. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(5):413-421. https://doi.org/10.18699/VJGB-22-51 (in Russian)
112. Pugliese J.Y., Culman S.W., Sprunger C.D. Harvesting forage of the perennial grain crop Kernza (Thinopyrum intermedium) increases root biomass and soil nitrogen cycling. Plant Soil. 2019;437(2):241-254. https://doi.org/10.1007/s11104-019-03974-6
113. Qi Z.J., Du P., Qian B.L., Zhuang L., Chen H., Chen T., Shen J., Guo J., Feng Y., Pei Z. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS·2BL) translocation line. Theor. Appl. Genet. 2010; 121(3):589-597. https://doi.org/10.1007/s00122-010-1332-7
114. Salina E.A., Adonina I.G., Badaeva E.D., Kroupin P.Yu., Stasyuk A.I., Leonova I.N., Shishkina A.A., Divashuk M.G., Starikova E.V., Khuat T.M.L., Syukov V.V., Karlov G.I. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of gene conferring resistance to fungal diseases. Euphytica. 2015;204:91-101. https://doi.org/10.1007/s10681-014-1344-5
115. Savari S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., Nelson A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019;3(3):430-439. https://doi.org/10.1038/s41559-018-0793-y
116. Sears E.R. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Broohaven Sympos. Biol. 1956;9:1-21
117. Sears E.R. Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 1976;10:31-51. https://doi.org/10.1146/annurev.ge.10.120176.000335
118. Sears E.R. Analysis of wheat-Agropyron recombinant chromosomes. In: Proceedings of the 8th Eucarpia Congress, Madrid, Spain, 23- 25 May 1977. 1978;63-72
119. Sepsi A., Molnar I., Szalay D., Molnar-Lang M. Characterization of a leaf rust resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor. Appl. Genet. 2008;116(6):825-834. https://doi.org/10.1007/s00122-008-0716-4
120. Shamanin V.P., Salina E., Wanyera R., Zelenskiy Y., Olivera P., Morgunov A. Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. Euphytica. 2016;212:287-296. https://doi.org/10.1007/s10681-016-1769-0
121. Shi Q., Guo X., Su H., Zhang Y., Hu Z., Zhang J., Han F. Autoploid origin and rapid diploidization of the tetraploid Thinopyrum elongatum revealed by genome differentiation and chromosome pairing in meiosis. Plant J. 2023;113(3):536-545. https://doi.org/10.1111/tpj.16066
122. Sibikeev S.N., Markelova T.S., Baukenova E.A., Druzhin A.E. Likely threat of the spread of race Ug99 of Puccinia graminis f. sp. tritici on wheat in Southeastern Russia. Russ. Agric. Sci. 2016; 42(2):145-148. https://doi.org/10.3103/S1068367416020154
123. Sibikeev S.N., Badaeva E.D., Gultyaeva E.I., Druzhin A.E., Shishkina A.A., Dragovich A.Y., Kroupin P.Y., Karlov G.I., Khuat T.M., Divashuk M.G. Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat-wheatgrass substitutions. Russ. J. Genet. 2017;53(3):314-324. https://doi.org/10.1134/S1022795417030115
124. Sibikeev S.N., Baranova O.A., Druzhin A.E. A prebreeding study of introgression spring bread wheat lines carrying combinations of stem rust resistance genes, Sr22+Sr25 and Sr35+Sr25. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(7):713-722. https://doi.org/10.18699/VJ21.081
125. Singh D. Development and Characterization of Wheat-Thinopyrum Junceiforme chromosome addition lines. Thesis. South Dakota State Univ., 2019 https://openprairie.sdstate.edu/etd/3368
126. Singh R.P., Hodson D.P., Jin Y., Ldaaguh E.S., Ayliffe M.A., Bhavani S., Rouse M.N., Pretorius Z.A., Szabo L.J., Huerta-Espino J., Basnet B.R., Lan C., Hovmøller M.S. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology. 2015;105(7):872-884. https://doi.org/10.1094/PHYTO-01-15-0030-FI
127. Singh R.P., Singh P.K., Rutkoski J., Hodson D.P., He X., Jørgensen L.N., Hovmøller M.S., Huerta-Espino J. Disease impact on wheat yield potential and prospects of genetic control. Annu. Rev. Phytopathol. 2016;54:303-322. https://doi.org/10.1146/annurev-phyto-080615-095835
128. Skolotneva E.S., Kelbin V.N., Morgunov A.I., Boiko N.I., Shamanin V.P., Salina E.A. Races composition of the Novosibirsk population of Puccinia graminis f. sp. tritici. Biol. Bull. Rev. 2023;13(1): S114-S122. https://doi.org/10.1134/S2079086423070125
129. Smith D.C. Intergeneric hybridization of Triticum and other grasses, principally Agropyron. J. Hered. 1943;34(7):219-224. https://doi.org/10.1093/oxfordjournals.jhered.a105291
130. Smith E.L., Schlehuber A.M., Young H.C., Edwards L.H. Registration of Agent wheat. (Reg. No. 471). Crop Sci. 1968;8(4):511-512. https://doi.org/10.2135/cropsci1968.0011183X000800040039x
131. Sun S.C. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron. Sin. 1981;7(1): 51-58
132. Tadesse Y., Chala A., Kassa B. Yield loss due to Septoria tritici blotch (Septoria tritici) of bread wheat (Triticum aestivum L.) in the central highlands of Ethiopia. J. Biol. Agric. Healthc. 2020;10(10):1-7. https://doi.org/10.7176/JBAH/10-10-01
133. Toropova E.Yu., Kazakova O.A., Piskarev V.V. Septoria blotch epidemic process on spring wheat varieties. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020; 24(2):139-148. https://doi.org/10.18699/VJ20.609
134. Tsitsin N.V. Problems of distant hybridization. In: Problems of Distant Hybridization. Moscow: Kolos Publ., 1979;5-20 (in Russian)
135. Tsvelev N.N. Grasses of the Soviet Union (Russian translations series, 8). Abingdon, UK: Routledge, 1984 Upelniek V.P., Belov V.I., Ivanova L.P., Dolgova S.P., Demidov A.S. Heritage of academician N.V. Tsitsin: state-of-the-art and potential of the collection of intermediate wheat × couch grass hybrids. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(3):667-674 (in Russian)
136. Wang H.W., Sun S.L., Ge W.Y., Zhao L.F., Hou B.Q., Wang K., Lyu Z.F., Chen L.Y., Xu S.S., Guo J., … Li A.F., Xu S.S., Bai G.H., Nevo E., Gao C.X., Ohm H., Kong L.R. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science. 2020;368(6493):eaba5435. https://doi.org/10.1126/science.aba5435
137. Wang L., Shi Q., Su H., Wang Y., Sha L., Fan X., Kang H., Zhang H., Zhou Y. St2-80: a new FISH marker for St genome and genome analysis in Triticeae. Genome. 2017;60(7):553-563. https://doi.org/10.1139/gen-2016-0228
138. Wang R.R.-C. Agropyron and Psathyrostachys. In: Kole C. (Ed.) Wild Crop Relatives: Genomic and Breeding Resources. Berlin, Heidelberg: Springer, 2011;77-108. https://doi.org/10.1007/978-3-642-14228-4_2
139. Wang S., Wang C., Feng X., Zhao J., Deng P., Wang Y., Zhang H., Liu X., Li T., Chen C., Wang B., Ji W. Molecular cytogenetics and development of St-chromosome-specific molecular markers of novel stripe rust resistant wheat-Thinopyrum intermedium and wheat-Thinopyrum ponticum substitution lines. BMC Plant Biol. 2022; 22(1):111. https://doi.org/10.1186/s12870-022-03496-x
140. Wang Y.Z., Cao Q., Zhang J.J., Wang S.W., Chen C.H., Wang C.Y., Zhang H., Wang Y., Ji W. Cytogenetic analysis and molecular marker development for a new wheat-Thinopyrum ponticum 1Js (1D) disomic substitution line with resistance to stripe rust and powdery mildew. Front. Plant Sci. 2020;11:1282. https://doi.org/10.3389/fpls.2020.01282
141. Wells D.G., Kota R.S., Sandhu H.S., Gardner W.A.S., Finney K.F. Registration of one disomic substitution line and five translocation lines of winter wheat germ plasm resistant to wheat streak mosaic virus. Crop Sci. 1982;22(6):1277-1278. https://doi.org/10.2135/cropsci1982.0011183X002200060083x
142. Wu X., Zang C., Zhang Y., Xu Y., Wang S., Li T., Gao L. Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China. J. Integr. Agric. 2023;22(6):1740-1749. https://doi.org/10.1016/j.jia.2022.08.125
143. Wulff B.B.H., Moscou M.J. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci. 2014;5: 692. https://doi.org/10.3389/fpls.2014.00692
144. Xu S., Jiang B., Han H., Ji X., Zhang J., Zhou S., Yang X., Li X., Li L., Liu W. Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in a wheat background. J. Integr Agr. 2023; 22(1):52-62. https://doi.org/10.1016/j.jia.2022.08.094
145. Xu X., Yuan D., Li D., Gao Y., Wang Z., Liu Y., Wang S., Xuan Y., Zhao H., Li T., Wu Y. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers. PeerJ. 2018;6: e4882. https://doi.org/10.7717/peerj.4882
146. Yang G., Boshoff W., Li H., Pretorius Z., Luo Q., Li B., Li Z., Zheng Q. Chromosomal composition analysis and molecular marker development for the novel Ug99‐resistant wheat-Thinopyrum ponticum translocation line WTT34. Theor. Appl. Genet. 2021;134(5):1587-1599. https://doi.org/10.1007/s00122‐021‐03796‐0
147. Yang G., Deng P., Ji W., Fu S., Li H., Li B., Li Z., Zheng Q. Physical mapping of a new powdery mildew resistance locus from Thinopyrum ponticum chromosome 4AgS. Front. Plant Sci. 2023;14: 1131205. https://doi.org/10.3389/fpls.2023.1131205
148. Yang Z., Mu Y., Wang Y., He F., Shi L., Fang Z., Zhang J., Zhang Q., Geng G., Zhang S. Characterization of a novel TtLEA2 gene from Tritipyrum and its transformation in wheat to enhance salt tolerance. Front. Plant Sci. 2022;13:830848. https://doi.org/10.3389/fpls.2022.830848
149. Yin X., Shang X., Pang B., Song J., Cao S., Li J., Zhang X. Molecular mapping of two novel stripe rust resistant genes YrTp1 and YrTp2 in A-3 derived from Triticum aestivum × Thinopyrum ponticum. Agric. Sci. China. 2006;5(7):483-490. https://doi.org/10.1016/S1671-2927(06)60081-3
150. Zeng W., He S.Y. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol. 2010;153(3):1188-1198. https://doi.org/10.1104/pp.110.157016
151. Zhan H.X., Li G.R., Zhang X.J., Li X., Guo H.J., Gong W.P., Jia J., Qiao L., Ren Y., Yang Z., Chang Z. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PloS One. 2014;9:e113455. https://doi.org/10.1371/journal.pone.0113455
152. Zhan H., Zhang X., Li G., Pan Z., Hu J., Li X., Qiao L., Jia J., Guo H., Chang Z., Yang Z. Molecular characterization of a new wheat-Thinopyrum intermedium translocation line with resistance to powdery mildew and stripe rust. Int. J. Mol. Sci. 2015;16(1):2162-2173. https://doi.org/10.3390/ijms16012162
153. Zhan J., McDonald B.A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 2013;51:131-153. https://doi.org/10.1146/annurev-phyto-082712-102302
154. Zhang J., Hewitt T.C., Boshoff W.H.P., Dundas I., Upadhyaya N., Li J., Patpour M., Chandramohan S., Pretorius Z.A., Hovmøller M., Schnippenkoetter W., Park R.F., Mago R., Periyannan S., Bhatt D., Hoxha S., Chakraborty S., Luo M., Dodds P., Steuernagel B., Wulff B.B.H., Ayliffe M., McIntosh R.A., Zhang P., Lagudah E.S. A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat. Commun. 2021;12:3378. https://doi.org/10.1038/s41467-021-23738-0
155. Zhang R.Q., Xiong C.X., Mu H.Q., Yao R.N., Meng X.R., Kong L.N., Xing L., Wu J., Feng Y., Cao A. Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J. 2020;9(4):882-888. https://doi.org/10.1016/j.cj.2020.09.012
156. Zhang W., Lukaszewski A.J., Kolmer J., Soria M.A., Goyal S., Dubcovsky J. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor. Appl. Genet. 2005;111(3):573-582. https://doi.org/10.1007/s00122-005-2048-y
157. Zhang X., Dong Y., Wang R.R.C. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome. 1996;39(6):1062-1071. https://doi.org/10.1139/g96-133
158. Zhang X., Shen X., Hao Y., Cai J., Ohm H.W., Kong L. A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor. Appl. Genet. 2011;122(2):263-270. https://doi.org/10.1007/s00122-010-1441-3
159. Zhang Z., Song L., Han H., Zhou S., Zhang J., Yang X., Li X., Liu W., Li L. Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. Int. J. Mol. Sci. 2017;18(11):2403. https://doi.org/10.3390/ijms18112403
160. Zheng Q., Klindworth D.L., Friesen T.L., Liu A., Li Z., Zhong S., Jin Y., Xu S.S. Characterization of Thinopyrum species for wheat stem rust resistance and ploidy level. Crop Sci. 2014а;54(6):2663-2672. https://doi.org/10.2135/CROPSCI2014.02.0093
161. Zheng Q., Lv Z., Niu Z., Li B., Li H., Xu S.S., Han F., Li Z. Molecular cytogenetic characterization and stem rust resistance of five wheat-Thinopyrum ponticum partial amphiploids. J. Genet. Genomics. 2014b;41(11):591-599. https://doi.org/10.1016/j.jgg.2014.06.003
162. Zheng X., Tang C., Han R., Zhao J., Qiao L., Zhang S., Qiao L., Ge C., Zheng J., Liu C. Identification, characterization, and evaluation of novel stripe rust resistant wheat-Thinopyrum intermedium chromosome translocation lines. Plant Dis. Publ. 2020;104(3):875-881. https://doi.org/10.1094/PDIS-01-19-0001-RE
163. Zhu Z., Hao Y., Mergoum M., Bai G., Humphreys G., Cloutier S., Xia X., He Z. Breeding wheat for resistance to Fusarium head blight in the global north: China, USA, and Canada. Crop J. 2019;7(6): 730-738. https://doi.org/10.1016/j.cj.2019.06.003