Структура и эволюция метаполицентромер
https://doi.org/10.18699/vjgb-24-66
Аннотация
Метаполицентромеры состоят из нескольких последовательных доменов центромерного хроматина, связанных со специфичным для центромеры вариантом гистона H3 – CENP-A, которые вместе функционируют как одна центромера. Они были открыты недавно и обнаружены у девяти видов цветковых растений, пяти видов насекомых и шести видов позвоночных животных. В данном обзоре рассматриваются структура метаполицентромер и возможные механизмы их возникновения и эволюции. Метаполицентромеры могут различаться по количеству центромерных доменов, последовательностям ДНК и эпигенетическим модификациям. Однако эти различия, по-видимому, не влияют на их функцию. Появление метаполицентромер объясняют множественными робертсоновскими транслокациями и сегментными дупликациями. В условиях геномной нестабильности (при межвидовой гибридизации и в ходе канцерогенеза) метаполицентромеры могут возникать de novo. Гипотеза центромерного драйва представляется убедительным объяснением эволюции центромер в целом и образования метаполицентромер и голоцентромер в частности. По-видимому, метаполицентромеры встречаются чаще, чем принято считать. Систематический обзор доступных цитогенетических публикаций позволил нам дополнительно идентифицировать 27 видов-кандидатов с метаполицентромерами. Таким образом, список уже установленных и вновь найденных видов-кандидатов охватывает 27 видов цветковых и восемь видов голосеменных растений, пять видов насекомых и семь видов позвоночных животных. Виды, включенные в этот список, спорадически распределены по филогенетическому древу. Это может указывать на независимое эволюционное возникновение метаполицентромер. Однако существующий список видов с идентифицированными и предполагаемыми метаполицентромерами слишком короткий, чтобы сделать надежные выводы об их эволюции, особенно в отсутствие знаний о родственных видах без метаполицентромер для сравнительного анализа. Необходимы дополнительные исследования для того, чтобы пролить свет на механизмы образования и эволюции метаполицентромер.
Об авторах
Е. О. ГришкоРоссия
Новосибирск
П. М. Бородин
Россия
Новосибирск
Список литературы
1. Ahmad S.F., Singchat W., Jehangir M., Suntronpong A., Panthum T., Malaivijitnond S., Srikulnath K. Dark matter of primate genomes: Satellite DNA repeats and their evolutionary dynamics. Cells. 2020; 9(12):2714. DOI 10.3390/cells9122714
2. Badr A., Elkington T.T. Variation of Giemsa C-band and fluorochrome banded karyotypes, and relationships in Allium subgen. Molium. Pl. Syst. Evol. 1977;128(1-2):23-35. DOI 10.1007/BF00985168
3. Baker H.G., Baker I. The cytotaxonomy of Filipendula (Rosaceae) and its implications. Am. J. Bot. 1967;54(8):1027-1034. DOI 10.1002/j.1537-2197.1967.tb10729.x
4. Balzano E., Giunta S. Centromeres under pressure: Evolutionary innovation in conflict with conserved function. Genes (Basel). 2020; 11(8):912. DOI 10.3390/genes11080912
5. Beentje H.J. A Monograph on Strophanthus DC. (Apocynaceae). Wageningen, 1982 Bhat B.K., Bindroo B.B. Sex chromosomes in Dioscorea deltoidea Wall. Cytologia (Tokyo). 1980;45(4):739-742. DOI 10.1508/cytologia.45.739
6. Black B.E., Foltz D.R., Chakravarthy S., Luger K., Woods V.L., Cleveland D.W. Structural determinants for generating centromeric chromatin. Nature. 2004;430(6999):578-582. DOI 10.1038/nature02766
7. Cardoso D.C., Heinze J., Moura M.N., Cristiano M.P. Chromosomal variation among populations of a fungus-farming ant: implications for karyotype evolution and potential restriction to gene flow. BMC Evol. Biol. 2018;18(1):146. DOI 10.1186/s12862-018-1247-5
8. Castellani M., Zhang M., Thangavel G., Mata-Sucre Y., Lux T., Campoy J.A., Marek M., Huettel B., Sun H., Mayer K.F.X., Schneeberger K., Marques A. Meiotic recombination dynamics in plants with repeat-based holocentromeres shed light on the primary drivers of crossover patterning. Nat. Plants. 2024;10:423-438. DOI 10.1038/s41477-024-01625-y
9. Chang S.D., Chao A.S., Lai Y.M., Liu H.Y., Soong Y.K. Interphase FISH-assisted second-trimester termination of a trisomy 21 fetus in an IVF-ET twin pregnancy. A case report. J. Reprod. Med. 2001; 46(12):1063-1066
10. Chi J.X., Huang L., Nie W., Wang J., Su B., Yang F. Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma. 2005;114(3):167-172. DOI 10.1007/s00412-005-0004-x
11. Cleveland D.W., Mao Y., Sullivan K.F. Centromeres and kinetochores. Cell. 2003;112(4):407-421. DOI 10.1016/S0092-8674(03)00115-6 Comings D.E., Okada T.A. Fine structure of kinetochore in Indian muntjac. Exp. Cell Res. 1971;67(1):97-110. DOI 10.1016/0014-4827(71)90625-2
12. Copenhaver G.P., Nickel K., Kuromori T., Benito M.I., Kaul S., Lin X., Bevan M., Murphy G., Harris B., Parnell L.D., McCombie W.R., Martienssen R.A., Marra M., Preuss D. Genetic definition and sequence analysis of Arabidopsis centromeres. Science. 1999; 286(5449):2468-2474. DOI 10.1126/science.286.5449.2468
13. Davies B.J., O’Brien I.E.W., Murray B.G. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Syst. Evol. 1997;208(3-4):169-185. DOI 10.1007/ BF00985440
14. Dawe R.K., Henikoff S. Centromeres put epigenetics in the driver’s seat. Trends Biochem. Sci. 2006;31(12):662-669. DOI 10.1016/j.tibs.2006.10.004
15. Dias Y., Mata‐Sucre Y., Thangavel G., Costa L., Baez M., Houben A., Marques A., Pedrosa‐Harand A. How diverse a monocentric chromosome can be? Repeatome and centromeric organization of Juncus effusus (Juncaceae). Plant J. 2024;118(6):1832-1847. DOI 10.1111/tpj.16712
16. Drinnenberg I.A., deYoung D., Henikoff S., Malik H.S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife. 2014;3:e03676. DOI 10.7554/eLife.03676
17. Drpic D., Almeida A.C., Aguiar P., Renda F., Damas J., Lewin H.A., Larkin D.M., Khodjakov A., Maiato H. Chromosome segregation is biased by kinetochore size. Curr. Biol. 2018;28(9):1344-1356. DOI 10.1016/j.cub.2018.03.023
18. Feinbrun N. Chromosome numbers and evolution in the genus Colchicum. Evolution (N.Y .). 1958;12(2):173. DOI 10.2307/2406028
19. Finseth F.R., Dong Y., Saunders A., Fishman L. Duplication and adaptive evolution of a key centromeric protein in Mimulus, a genus with female meiotic drive. Mol. Biol. Evol. 2015;32(10):2694-2706. DOI 10.1093/molbev/msv145
20. Fiskesjö G., Lassen C., Renberg L. Chlorinated phenoxyacetic acids and chlorophenols in the modified Allium test. Chem. Biol. Interact. 1981;34(3):333-344. DOI 10.1016/0009-2797(81)90105-8
21. Flemming W. Zellsubstanz, Kern und Zelltheilung. Leipzig: F.C.W. Vogel, 1882. DOI 10.5962/bhl.title.168645
22. Furuyama S., Biggins S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl. Acad. Sci. USA. 2007;104(37):14706-14711. DOI 10.1073/pnas.0706985104
23. Gassmann R., Rechtsteiner A., Yuen K., Muroyama A., Egelhofer T., Gaydos L., Barron F., Maddox P., Essex A., Monen J., Ercan S., Lieb J.D., Oegema K., Strome S., Desai A. An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature. 2012;484:534-537. DOI 10.1038/nature10973
24. Glöckner G., Heidel A.J. Centromere sequence and dynamics in Dictyostelium discoideum. Nucleic Acids Res. 2009;37(6):1809-1816. DOI 10.1093/nar/gkp017
25. Grishko E., Malinovskaya L., Slobodchikova A., Kotelnikov A., Torgasheva A., Borodin P. Cytological analysis of crossover frequency and distribution in male meiosis of cardueline finches (Fringillidae, Aves). Animals. 2023;13(23):3624. DOI 10.3390/ani13233624
26. Gržan T., Despot-Slade E., Meštrović N., Plohl M., Mravinac B. CenH3 distribution reveals extended centromeres in the model beetle Tribolium castaneum. PLoS Genet. 2020;16(10):e1009115. DOI 10.1371/ journal.pgen.1009115
27. Guerra M., Ribeiro T., Felix L.P. Monocentric chromosomes in Juncus (Juncaceae) and implications for the chromosome evolution of the family. Bot. J. Linn. Soc. 2019;191(4):475-483. DOI 10.1093/botlinnean/boz065
28. Haupt W., Fischer T.C., Winderl S., Fransz P., Torres‐Ruiz R.A. The CENTROMERE1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. Plant J. 2001;27(4):285-296. DOI 10.1046/j.1365-313x.2001.01087.x
29. Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293(5532): 1098-1102. DOI 10.1126/science.1062939
30. Henikoff S., Ramachandran S., Krassovsky K., Bryson T.D., Codomo C.A., Brogaard K., Widom J., Wang J.-P., Henikoff J.G. The budding yeast centromere DNA element II wraps a stable Cse4 hemisome in either orientation in vivo. eLife. 2014;3:e01861. DOI 10.7554/eLife.01861
31. Higgins A.W., Gustashaw K.M., Willard H.F. Engineered human dicentric chromosomes show centromere plasticity. Chromosom. Res. 2005;13(8):745-762. DOI 10.1007/s10577-005-1009-2
32. Huang L., Chi J., Nie W., Wang J., Yang F. Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints. Genetica. 2006;127(1-3):25-33. DOI 10.1007/s10709-005-2449-5
33. Huang Y.-C., Lee C.-C., Kao C.-Y., Chang N.-C., Lin C.-C., Shoemaker D., Wang J. Evolution of long centromeres in fire ants. BMC Evol. Biol. 2016;16(1):189. DOI 10.1186/s12862-016-0760-7
34. Kanesaki Y., Imamura S., Matsuzaki M., Tanaka K. Identification of centromere regions in chromosomes of a unicellular red alga, Cyanidioschyzon merolae. FEBS Lett. 2015;589(11):1219-1224. DOI 10.1016/j.febslet.2015.04.009
35. Kawabe A., Nasuda S., Charlesworth D. Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics. 2006;174(4):2021-2032. DOI 10.1534/genetics.106.063628
36. Kollmann F. Karyotypes of three Allium species of the erdelii group. Caryologia. 1970;23(4):647-655. DOI 10.1080/00087114.1970.10796400
37. Kuo Y.T., Câmara A.S., Schubert V., Neumann P., Macas J., Melzer M., Chen J., Fuchs J., Abel S., Klocke E., Huettel B., Himmelbach A., Demidov D., Dunemann F., Mascher M., Ishii T., Marques A., Houben A. Holocentromeres can consist of merely a few megabasesized satellite arrays. Nat. Commun. 2023;14:3502. DOI 10.1038/ s41467-023-38922-7
38. Kuo Y.T., Schubert V., Marques A., Schubert I., Houben A. Centromere diversity: How different repeat‐based holocentromeres may have evolved. BioEssays. 2024;46(6):2400013. DOI 10.1002/bies.202400013
39. Kurihara N., Tajima Y., Yamada T.K., Matsuda A., Matsuishi T. Description of the karyotypes of stejneger’s beaked whale (Mesoplodon stejnegeri) and hubbs’ beaked whale (M. carlhubbsi). Genet. Mol. Biol. 2017;40(4):803-807. DOI 10.1590/1678-4685-gmb-2016-0284
40. Lee H.R., Zhang W., Langdon T., Jin W., Yan H., Cheng Z., Jiang J. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc. Natl. Acad. Sci. USA. 2005;102(33):11793-11798. DOI 10.1073/pnas.0503863102
41. Li L.C. The karyotype analysis of Tsuga longibracteata and its taxonomic significance. Acta Bot. Yunnan. 1991;13(3):309-313
42. Ma B., Wang H., Liu J., Chen L., Xia X., Wei W., Yang Z., Yuan J., Luo Y., He N. The gap-free genome of mulberry elucidates the architecture and evolution of polycentric chromosomes. Hortic. Res. 2023;10(7):uhad111. DOI 10.1093/hr/uhad111
43. Ma J., Jackson S.A. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res. 2006;16(2):251-259. DOI 10.1101/gr.4583106
44. Macas J., Ávila Robledillo L., Kreplak J., Novák P., Koblížková A., Vrbová I., Burstin J., Neumann P. Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes. PLoS Genet. 2023;19(2):e1010633. DOI 10.1371/journal.pgen.1010633
45. Maheshwari S., Tan E.H., West A., Franklin F.C.H., Comai L., Chan S.W.L. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet. 2015;11(1):e1004970. DOI 10.1371/journal.pgen.1004970
46. Malik H.S., Henikoff S. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics. 2001;157(3):1293-1298. DOI 10.1093/genetics/157.3.1293
47. Malinovskaya L.P., Slobodchikova A.Y., Grishko E.O., Pristyazhnyuk I.E., Torgasheva A.A., Borodin P.M. Germline-restricted chromosomes and autosomal variants revealed by pachytene karyotyping of 17 avian species. Cytogenet. Genome Res. 2022;162(3):148-160. DOI 10.1159/000524681
48. Marques A., Ribeiro T., Neumann P., Macas J., Novák P., Schubert V., Pellino M., Fuchs J., Ma W., Kuhlmann M., Brandt R., Vanzela A.L.L., Beseda T., Šimková H., Pedrosa-Harand A., Houben A. Holocentromeres in Rhynchospora are associated with genomewide centromere-specific repeat arrays interspersed among euchromatin. Proc. Natl. Acad. Sci. USA. 2015;112(44):13633-13638. DOI 10.1073/pnas.1512255112
49. Mata-Sucre Y., Matzenauer W., Castro N., Huettel B., Pedrosa-Harand A., Marques A., Souza G. Repeat-based phylogenomics shed light on unclear relationships in the monocentric genus Juncus L. (Juncaceae). Mol. Phylogenet. Evol. 2023;189:107930. DOI 10.1016/j.ympev.2023.107930
50. Melters D.P., Paliulis L.V., Korf I.F., Chan S.W.L. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosom. Res. 2012;20(5):579-593. DOI 10.1007/s10577-012-9292-1
51. Melters D.P., Bradnam K.R., Young H.A., Telis N., May M.R., Ruby J., Sebra R., Peluso P., Eid J., Rank D., Garcia J., DeRisi J.L., Smith T., Tobias C., Ross-Ibarra J., Korf I., Chan S.W. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013;14(1):R10. DOI 10.1186/gb-2013-14-1-r10
52. Mendiburo M.J., Padeken J., Fülöp S., Schepers A., Heun P. Drosophila CENH3 is sufficient for centromere formation. Science. 2011; 334(6056):686-690. DOI 10.1126/science.1206880
53. Metcalfe C.J., Bulazel K.V., Ferreri G.C., Schroeder-Reiter E., Wanner G., Rens W., Obergfell C., Eldridge M.D.B., O’Neill R.J. Genomic instability within centromeres of interspecific marsupial hybrids. Genetics. 2007;177(4):2507-2517. DOI 10.1534/genetics.107.082313
54. Miceli P., Ficini G., Garbari F. The genus «Allium» L. in Italy. XIII. Morphological, caryological and leaf anatomical study in some C-W Mediterranean triploid populations of «Allium trifoliatum» Cyr. Webbia. 1984;38(1):793-803. DOI 10.1080/00837792.1984.10670350
55. Nagpal H., Fierz B. The elusive structure of centro-chromatin: Molecular order or dynamic heterogenetity. J. Mol. Biol. 2021;433(6): 166676. DOI 10.1016/j.jmb.2020.10.010
56. Navarro-Mendoza M.I., Pérez-Arques C., Panchal S., Nicolás F.E., Mondo S.J., Ganguly P., Pangilinan J., Grigoriev I.V., Heitman J., Sanyal K., Garre V. Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr. Biol. 2019;29(22):3791-3802. DOI 10.1016/j.cub.2019.09.024
57. Neumann P., Navrátilová A., Schroeder-Reiter E., Koblížková A., Steinbauerová V., Chocholová E., Novák P., Wanner G., Macas J. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8(6):e1002777. DOI 10.1371/journal.pgen.1002777
58. Neumann P., Pavlíková Z., Koblížková A., Fuková I., Jedličková V., Novák P., Macas J. Centromeres off the hook: Massive changes in centromere size and structure following duplication of Cenh3 gene in Fabeae species. Mol. Biol. Evol. 2015;32(7):1862-1879. DOI 10.1093/molbev/msv070
59. Neumann P., Schubert V., Fuková I., Manning J.E., Houben A., Macas J. Epigenetic histone marks of extended meta-polycentric centromeres of Lathyrus and Pisum chromosomes. Front. Plant Sci. 2016;7(MAR2016):234. DOI 10.3389/fpls.2016.00234
60. Neumann P., Oliveira L., Čížková J., Jang T.S., Klemme S., Novák P., Stelmach K., Koblížková A., Doležel J., Macas J. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. New Phytologist. 2021;229(4):2365-2377. DOI 10.1111/nph.17003
61. O’Neill R.J.W., O’Neill M.J., Marshall Graves J.A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature. 1998;393(6680): 68-72. DOI 10.1038/29985
62. O’Neill R.J.W., Eldridge M.D.B., Graves J.A.M. Chromosome heterozygosity and de novo chromosome rearrangements in mammalian interspecies hybrids. Mamm. Genome. 2001;12(3):256-259. DOI 10.1007/s003350010270
63. Panda B.B., Sahu R.K., Sharma C.B.S.R. Cytogenetic hazards from agricultural chemicals. 2. Selective clastogenesis and spindle inhibition in some plant mitotic systems by the β-exotoxin and the general ineffectiveness of the δ-endotoxin protein of Bacillus thuringiensis. Mutat. Res. Toxicol. 1979;67(2):161-166. DOI 10.1016/0165-1218(79)90127-7
64. Pazy B., Plitmann U. Holocentric chromosome behaviour in Cuscuta (Cuscutaceae). Plant Syst. Evol. 1994;191:105-109. DOI 10.1007/BF00985345
65. Perpelescu M., Hori T., Toyoda A., Misu S., Monma N., Ikeo K., Obuse C., Fujiyama A., Fukagawa T. HJURP is involved in the expansion of centromeric chromatin. Mol. Biol. Cell. 2015;26(15): 2742-2754. DOI 10.1091/mbc.E15-02-0094
66. Schlarbaum S.E., Tsuchiya T. The chromosomes of Cunninghamia konishii, C. lanceolata, and Taiwania cryptomerioides (Taxodiaceae). Plant Syst. Evol. 1984a;145(3-4):169-181. DOI 10.1007/ BF00983946
67. Schlarbaum S.E., Tsuchiya T. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Syst. Evol. 1984b;147(1-2):29-54. DOI 10.1007/BF00984578
68. Schroeder-Reiter E., Wanner G. Chromosome centromeres: Structural and analytical investigations with high resolution scanning electron microscopy in combination with focused ion beam milling. Cytogenet. Genome Res. 2009;24(3-4):239-250. DOI 10.1159/000218129
69. Senaratne A.P., Muller H., Fryer K.A., Kawamoto M., Katsuma S., Drinnenberg I.A. Formation of the CenH3-deficient holocentromere in Lepidoptera avoids active chromatin. Curr. Biol. 2021;31(1):173- 181.e7. DOI 10.1016/j.cub.2020.09.078
70. Senaratne A.P., Cortes-Silva N., Drinnenberg I.A. Evolution of holocentric chromosomes: Drivers, diversity, and deterrents. Semin. Cell Dev. Biol. 2022;127:90-99. DOI 10.1016/j.semcdb.2022.01.003
71. Shirakawa J., Hoshi Y., Kondo K. Chromosome differentiation and genome organization in carnivorous plant family Droseraceae. Chromosome Bot. 2011a;6(4);111-119. DOI 10.3199/iscb.6.111
72. Shirakawa J, Katsuya N, Yoshikazu H. A chromosome study of two centromere differentiating Drosera species, D. arcturi and D. regia. Caryologia. 2011b;64(4):453-463. DOI 10.1080/00087114.2011.10589813
73. Stalker H.T., Dalmacio R.D. Chromosomes of Arachis species, section Arachis. J. Hered. 1981;72(6):403-408. DOI 10.1093/oxford journals.jhered.a109541
74. Sullivan K.F., Hechenberger M., Masri K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 1994;127(3):581-592. DOI 10.1083/jcb.127.3.581
75. Sullivan L.L., Boivin C.D., Mravinac B., Song I.Y., Sullivan B.A. Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosom. Res. 2011. DOI 10.1007/s10577-011-9208-5
76. Sullivan L.L., Maloney K.A., Towers A.J., Gregory S.G., Sullivan B.A. Human centromere repositioning within euchromatin after partial chromosome deletion. Chromosom. Res. 2016. DOI 10.1007/s10577-016-9536-6
77. Tachiwana H., Kagawa W., Kurumizaka H. Comparison between the CENP-A and histone H3 structures in nucleosomes. Nucleus. 2012; 3(1):6-11. DOI 10.4161/nucl.18372
78. Talbert P.B., Henikoff S. Transcribing centromeres: Noncoding RNAs and kinetochore assembly. Trends Genet. 2018;34(8):587-599. DOI 10.1016/j.tig.2018.05.001
79. Talbert P.B., Henikoff S. What makes a centromere? Exp. Cell Res. 2020;389(2):111895. DOI 10.1016/j.yexcr.2020.111895
80. Talbert P.B., Masuelli R., Tyagi A.P., Comai L., Henikoff S. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell. 2002;14(5):1053-1066. DOI 10.1105/tpc.010425
81. Talbert P.B., Kasinathan S., Henikoff S. Simple and complex centromeric satellites in Drosophila sibling species. Genetics. 2018; 208(3):977-990. DOI 10.1534/genetics.117.300620
82. Tanaka N. Chromosomal traits of Chamaelirium luteum (Melanthiaceae) with particular focus on the large heterochromatic centromeres. Taiwania. 2020;65(3):286-294. DOI 10.6165/tai.2020.65.286
83. Teixeira G.A., Barros L.A.C., de Aguiar H.J.A.C., Lopes D.M. Multiple heterochromatin diversification events in the genome of fungus-farming ants: insights from repetitive sequences. Chromosoma. 2022;131(1-2):59-75. DOI 10.1007/s00412-022-00770-7
84. van Hooff J.J., Tromer E., van Wijk L.M., Snel B., Kops G.J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 2017;18(9):1559- 1571. DOI 10.15252/embr.201744102
85. Wang Y., Wu L., Yuen K.W.Y. The roles of transcription, chromatin organisation and chromosomal processes in holocentromere establishment and maintenance. Semin.Cell Dev. Biol. 2022;127:79-89. DOI 10.1016/j.semcdb.2022.01.004
86. Winey M., Mamay C.L., O’Toole E.T., Mastronarde D.N., Giddings T.H., McDonald K.L., McIntosh J.R. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 1995;129(6):1601-1615. DOI 10.1083/jcb.129.6.1601
87. Wurster D.H., Benirschke K. Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science. 1970; 168(3937):1364-1366. DOI 10.1126/science.168.3937.1364
88. Yang F., O’Brien P.C.M., Wienberg J., Neitzel H., Lin C.C., FergusonSmith M.A. Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma. 1997;106(1):37-43. DOI 10.1007/s004120050222
89. Young A., Hill J., Murray B., Peakall R. Breeding system, genetic diversity and clonal structure in the sub-alpine forb Rutidosis leiolepis F. Muell. (Asteraceae). Biol. Conserv. 2002;106(1):71-78. DOI 10.1016/S0006-3207(01)00230-0
90. Zhang W., Friebe B., Gill B.S., Jiang J. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma. 2010;119(5):553-563. DOI 10.1007/s00412-010-0278-5