Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Structure and evolution of metapolycentromeres

https://doi.org/10.18699/vjgb-24-66

Abstract

Metapolycentromeres consist of multiple sequential domains of centromeric chromatin associated with a centromere-specific variant of histone H3 (CENP-A), functioning collectively as a single centromere. To date, they have been revealed in nine flowering plant, five insect and six vertebrate species. In this paper, we focus on their structure and possible mechanisms of emergence and evolution. The metapolycentromeres may vary in the number of centromeric domains and in their genetic content and epigenetic modifications. However, these variations do not seem to affect their function. The emergence of metapolycentromeres has been attributed to multiple Robertsonian translocations and segmental duplications. Conditions of genomic instability, such as interspecific hybridization and malignant neoplasms, are suggested as triggers for the de novo emergence of metapolycentromeres. Addressing the “centromere paradox” – the rapid evolution of centromeric DNA and proteins despite their conserved cellular function – we explore the centromere drive hypothesis as a plausible explanation for the dynamic evolution of centromeres in general, and in particular the emergence of metapolycentromeres and holocentromeres. Apparently, metapolycentromeres are more common across different species than it was believed until recently. Indeed, a systematic review of the available cytogenetic publications allowed us to identify 27 candidate species with metapolycentromeres. Тhe list of the already established and newly revealed candidate species thus spans 27 species of flowering plants and eight species of gymnosperm plants, five species of insects, and seven species of vertebrates. This indicates an erratic phylogenetic distribution of the species with metapolycentromeres and may suggest an independent emergence of the metapolycentromeres in the course of evolution. However, the current catalog of species with identified and likely metapolycentromeres remains too short to draw reliable conclusions about their evolution, particularly in the absence of knowledge about related species without metapolycentromeres for comparative analysis. More studies are necessary to shed light on the mechanisms of metapolycentromere formation and evolution. 

About the Authors

E. O. Grishko
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



P. M. Borodin
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Ahmad S.F., Singchat W., Jehangir M., Suntronpong A., Panthum T., Malaivijitnond S., Srikulnath K. Dark matter of primate genomes: Satellite DNA repeats and their evolutionary dynamics. Cells. 2020; 9(12):2714. DOI 10.3390/cells9122714

2. Badr A., Elkington T.T. Variation of Giemsa C-band and fluorochrome banded karyotypes, and relationships in Allium subgen. Molium. Pl. Syst. Evol. 1977;128(1-2):23-35. DOI 10.1007/BF00985168

3. Baker H.G., Baker I. The cytotaxonomy of Filipendula (Rosaceae) and its implications. Am. J. Bot. 1967;54(8):1027-1034. DOI 10.1002/j.1537-2197.1967.tb10729.x

4. Balzano E., Giunta S. Centromeres under pressure: Evolutionary innovation in conflict with conserved function. Genes (Basel). 2020; 11(8):912. DOI 10.3390/genes11080912

5. Beentje H.J. A Monograph on Strophanthus DC. (Apocynaceae). Wageningen, 1982 Bhat B.K., Bindroo B.B. Sex chromosomes in Dioscorea deltoidea Wall. Cytologia (Tokyo). 1980;45(4):739-742. DOI 10.1508/cytologia.45.739

6. Black B.E., Foltz D.R., Chakravarthy S., Luger K., Woods V.L., Cleveland D.W. Structural determinants for generating centromeric chromatin. Nature. 2004;430(6999):578-582. DOI 10.1038/nature02766

7. Cardoso D.C., Heinze J., Moura M.N., Cristiano M.P. Chromosomal variation among populations of a fungus-farming ant: implications for karyotype evolution and potential restriction to gene flow. BMC Evol. Biol. 2018;18(1):146. DOI 10.1186/s12862-018-1247-5

8. Castellani M., Zhang M., Thangavel G., Mata-Sucre Y., Lux T., Campoy J.A., Marek M., Huettel B., Sun H., Mayer K.F.X., Schneeberger K., Marques A. Meiotic recombination dynamics in plants with repeat-based holocentromeres shed light on the primary drivers of crossover patterning. Nat. Plants. 2024;10:423-438. DOI 10.1038/s41477-024-01625-y

9. Chang S.D., Chao A.S., Lai Y.M., Liu H.Y., Soong Y.K. Interphase FISH-assisted second-trimester termination of a trisomy 21 fetus in an IVF-ET twin pregnancy. A case report. J. Reprod. Med. 2001; 46(12):1063-1066

10. Chi J.X., Huang L., Nie W., Wang J., Su B., Yang F. Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma. 2005;114(3):167-172. DOI 10.1007/s00412-005-0004-x

11. Cleveland D.W., Mao Y., Sullivan K.F. Centromeres and kinetochores. Cell. 2003;112(4):407-421. DOI 10.1016/S0092-8674(03)00115-6 Comings D.E., Okada T.A. Fine structure of kinetochore in Indian muntjac. Exp. Cell Res. 1971;67(1):97-110. DOI 10.1016/0014-4827(71)90625-2

12. Copenhaver G.P., Nickel K., Kuromori T., Benito M.I., Kaul S., Lin X., Bevan M., Murphy G., Harris B., Parnell L.D., McCombie W.R., Martienssen R.A., Marra M., Preuss D. Genetic definition and sequence analysis of Arabidopsis centromeres. Science. 1999; 286(5449):2468-2474. DOI 10.1126/science.286.5449.2468

13. Davies B.J., O’Brien I.E.W., Murray B.G. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Syst. Evol. 1997;208(3-4):169-185. DOI 10.1007/ BF00985440

14. Dawe R.K., Henikoff S. Centromeres put epigenetics in the driver’s seat. Trends Biochem. Sci. 2006;31(12):662-669. DOI 10.1016/j.tibs.2006.10.004

15. Dias Y., Mata‐Sucre Y., Thangavel G., Costa L., Baez M., Houben A., Marques A., Pedrosa‐Harand A. How diverse a monocentric chromosome can be? Repeatome and centromeric organization of Juncus effusus (Juncaceae). Plant J. 2024;118(6):1832-1847. DOI 10.1111/tpj.16712

16. Drinnenberg I.A., deYoung D., Henikoff S., Malik H.S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife. 2014;3:e03676. DOI 10.7554/eLife.03676

17. Drpic D., Almeida A.C., Aguiar P., Renda F., Damas J., Lewin H.A., Larkin D.M., Khodjakov A., Maiato H. Chromosome segregation is biased by kinetochore size. Curr. Biol. 2018;28(9):1344-1356. DOI 10.1016/j.cub.2018.03.023

18. Feinbrun N. Chromosome numbers and evolution in the genus Colchicum. Evolution (N.Y .). 1958;12(2):173. DOI 10.2307/2406028

19. Finseth F.R., Dong Y., Saunders A., Fishman L. Duplication and adaptive evolution of a key centromeric protein in Mimulus, a genus with female meiotic drive. Mol. Biol. Evol. 2015;32(10):2694-2706. DOI 10.1093/molbev/msv145

20. Fiskesjö G., Lassen C., Renberg L. Chlorinated phenoxyacetic acids and chlorophenols in the modified Allium test. Chem. Biol. Interact. 1981;34(3):333-344. DOI 10.1016/0009-2797(81)90105-8

21. Flemming W. Zellsubstanz, Kern und Zelltheilung. Leipzig: F.C.W. Vogel, 1882. DOI 10.5962/bhl.title.168645

22. Furuyama S., Biggins S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl. Acad. Sci. USA. 2007;104(37):14706-14711. DOI 10.1073/pnas.0706985104

23. Gassmann R., Rechtsteiner A., Yuen K., Muroyama A., Egelhofer T., Gaydos L., Barron F., Maddox P., Essex A., Monen J., Ercan S., Lieb J.D., Oegema K., Strome S., Desai A. An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature. 2012;484:534-537. DOI 10.1038/nature10973

24. Glöckner G., Heidel A.J. Centromere sequence and dynamics in Dictyostelium discoideum. Nucleic Acids Res. 2009;37(6):1809-1816. DOI 10.1093/nar/gkp017

25. Grishko E., Malinovskaya L., Slobodchikova A., Kotelnikov A., Torgasheva A., Borodin P. Cytological analysis of crossover frequency and distribution in male meiosis of cardueline finches (Fringillidae, Aves). Animals. 2023;13(23):3624. DOI 10.3390/ani13233624

26. Gržan T., Despot-Slade E., Meštrović N., Plohl M., Mravinac B. CenH3 distribution reveals extended centromeres in the model beetle Tribolium castaneum. PLoS Genet. 2020;16(10):e1009115. DOI 10.1371/ journal.pgen.1009115

27. Guerra M., Ribeiro T., Felix L.P. Monocentric chromosomes in Juncus (Juncaceae) and implications for the chromosome evolution of the family. Bot. J. Linn. Soc. 2019;191(4):475-483. DOI 10.1093/botlinnean/boz065

28. Haupt W., Fischer T.C., Winderl S., Fransz P., Torres‐Ruiz R.A. The CENTROMERE1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. Plant J. 2001;27(4):285-296. DOI 10.1046/j.1365-313x.2001.01087.x

29. Henikoff S., Ahmad K., Malik H.S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293(5532): 1098-1102. DOI 10.1126/science.1062939

30. Henikoff S., Ramachandran S., Krassovsky K., Bryson T.D., Codomo C.A., Brogaard K., Widom J., Wang J.-P., Henikoff J.G. The budding yeast centromere DNA element II wraps a stable Cse4 hemisome in either orientation in vivo. eLife. 2014;3:e01861. DOI 10.7554/eLife.01861

31. Higgins A.W., Gustashaw K.M., Willard H.F. Engineered human dicentric chromosomes show centromere plasticity. Chromosom. Res. 2005;13(8):745-762. DOI 10.1007/s10577-005-1009-2

32. Huang L., Chi J., Nie W., Wang J., Yang F. Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints. Genetica. 2006;127(1-3):25-33. DOI 10.1007/s10709-005-2449-5

33. Huang Y.-C., Lee C.-C., Kao C.-Y., Chang N.-C., Lin C.-C., Shoemaker D., Wang J. Evolution of long centromeres in fire ants. BMC Evol. Biol. 2016;16(1):189. DOI 10.1186/s12862-016-0760-7

34. Kanesaki Y., Imamura S., Matsuzaki M., Tanaka K. Identification of centromere regions in chromosomes of a unicellular red alga, Cyanidioschyzon merolae. FEBS Lett. 2015;589(11):1219-1224. DOI 10.1016/j.febslet.2015.04.009

35. Kawabe A., Nasuda S., Charlesworth D. Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics. 2006;174(4):2021-2032. DOI 10.1534/genetics.106.063628

36. Kollmann F. Karyotypes of three Allium species of the erdelii group. Caryologia. 1970;23(4):647-655. DOI 10.1080/00087114.1970.10796400

37. Kuo Y.T., Câmara A.S., Schubert V., Neumann P., Macas J., Melzer M., Chen J., Fuchs J., Abel S., Klocke E., Huettel B., Himmelbach A., Demidov D., Dunemann F., Mascher M., Ishii T., Marques A., Houben A. Holocentromeres can consist of merely a few megabasesized satellite arrays. Nat. Commun. 2023;14:3502. DOI 10.1038/ s41467-023-38922-7

38. Kuo Y.T., Schubert V., Marques A., Schubert I., Houben A. Centromere diversity: How different repeat‐based holocentromeres may have evolved. BioEssays. 2024;46(6):2400013. DOI 10.1002/bies.202400013

39. Kurihara N., Tajima Y., Yamada T.K., Matsuda A., Matsuishi T. Description of the karyotypes of stejneger’s beaked whale (Mesoplodon stejnegeri) and hubbs’ beaked whale (M. carlhubbsi). Genet. Mol. Biol. 2017;40(4):803-807. DOI 10.1590/1678-4685-gmb-2016-0284

40. Lee H.R., Zhang W., Langdon T., Jin W., Yan H., Cheng Z., Jiang J. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc. Natl. Acad. Sci. USA. 2005;102(33):11793-11798. DOI 10.1073/pnas.0503863102

41. Li L.C. The karyotype analysis of Tsuga longibracteata and its taxonomic significance. Acta Bot. Yunnan. 1991;13(3):309-313

42. Ma B., Wang H., Liu J., Chen L., Xia X., Wei W., Yang Z., Yuan J., Luo Y., He N. The gap-free genome of mulberry elucidates the architecture and evolution of polycentric chromosomes. Hortic. Res. 2023;10(7):uhad111. DOI 10.1093/hr/uhad111

43. Ma J., Jackson S.A. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res. 2006;16(2):251-259. DOI 10.1101/gr.4583106

44. Macas J., Ávila Robledillo L., Kreplak J., Novák P., Koblížková A., Vrbová I., Burstin J., Neumann P. Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes. PLoS Genet. 2023;19(2):e1010633. DOI 10.1371/journal.pgen.1010633

45. Maheshwari S., Tan E.H., West A., Franklin F.C.H., Comai L., Chan S.W.L. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet. 2015;11(1):e1004970. DOI 10.1371/journal.pgen.1004970

46. Malik H.S., Henikoff S. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics. 2001;157(3):1293-1298. DOI 10.1093/genetics/157.3.1293

47. Malinovskaya L.P., Slobodchikova A.Y., Grishko E.O., Pristyazhnyuk I.E., Torgasheva A.A., Borodin P.M. Germline-restricted chromosomes and autosomal variants revealed by pachytene karyotyping of 17 avian species. Cytogenet. Genome Res. 2022;162(3):148-160. DOI 10.1159/000524681

48. Marques A., Ribeiro T., Neumann P., Macas J., Novák P., Schubert V., Pellino M., Fuchs J., Ma W., Kuhlmann M., Brandt R., Vanzela A.L.L., Beseda T., Šimková H., Pedrosa-Harand A., Houben A. Holocentromeres in Rhynchospora are associated with genomewide centromere-specific repeat arrays interspersed among euchromatin. Proc. Natl. Acad. Sci. USA. 2015;112(44):13633-13638. DOI 10.1073/pnas.1512255112

49. Mata-Sucre Y., Matzenauer W., Castro N., Huettel B., Pedrosa-Harand A., Marques A., Souza G. Repeat-based phylogenomics shed light on unclear relationships in the monocentric genus Juncus L. (Juncaceae). Mol. Phylogenet. Evol. 2023;189:107930. DOI 10.1016/j.ympev.2023.107930

50. Melters D.P., Paliulis L.V., Korf I.F., Chan S.W.L. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosom. Res. 2012;20(5):579-593. DOI 10.1007/s10577-012-9292-1

51. Melters D.P., Bradnam K.R., Young H.A., Telis N., May M.R., Ruby J., Sebra R., Peluso P., Eid J., Rank D., Garcia J., DeRisi J.L., Smith T., Tobias C., Ross-Ibarra J., Korf I., Chan S.W. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013;14(1):R10. DOI 10.1186/gb-2013-14-1-r10

52. Mendiburo M.J., Padeken J., Fülöp S., Schepers A., Heun P. Drosophila CENH3 is sufficient for centromere formation. Science. 2011; 334(6056):686-690. DOI 10.1126/science.1206880

53. Metcalfe C.J., Bulazel K.V., Ferreri G.C., Schroeder-Reiter E., Wanner G., Rens W., Obergfell C., Eldridge M.D.B., O’Neill R.J. Genomic instability within centromeres of interspecific marsupial hybrids. Genetics. 2007;177(4):2507-2517. DOI 10.1534/genetics.107.082313

54. Miceli P., Ficini G., Garbari F. The genus «Allium» L. in Italy. XIII. Morphological, caryological and leaf anatomical study in some C-W Mediterranean triploid populations of «Allium trifoliatum» Cyr. Webbia. 1984;38(1):793-803. DOI 10.1080/00837792.1984.10670350

55. Nagpal H., Fierz B. The elusive structure of centro-chromatin: Molecular order or dynamic heterogenetity. J. Mol. Biol. 2021;433(6): 166676. DOI 10.1016/j.jmb.2020.10.010

56. Navarro-Mendoza M.I., Pérez-Arques C., Panchal S., Nicolás F.E., Mondo S.J., Ganguly P., Pangilinan J., Grigoriev I.V., Heitman J., Sanyal K., Garre V. Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr. Biol. 2019;29(22):3791-3802. DOI 10.1016/j.cub.2019.09.024

57. Neumann P., Navrátilová A., Schroeder-Reiter E., Koblížková A., Steinbauerová V., Chocholová E., Novák P., Wanner G., Macas J. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8(6):e1002777. DOI 10.1371/journal.pgen.1002777

58. Neumann P., Pavlíková Z., Koblížková A., Fuková I., Jedličková V., Novák P., Macas J. Centromeres off the hook: Massive changes in centromere size and structure following duplication of Cenh3 gene in Fabeae species. Mol. Biol. Evol. 2015;32(7):1862-1879. DOI 10.1093/molbev/msv070

59. Neumann P., Schubert V., Fuková I., Manning J.E., Houben A., Macas J. Epigenetic histone marks of extended meta-polycentric centromeres of Lathyrus and Pisum chromosomes. Front. Plant Sci. 2016;7(MAR2016):234. DOI 10.3389/fpls.2016.00234

60. Neumann P., Oliveira L., Čížková J., Jang T.S., Klemme S., Novák P., Stelmach K., Koblížková A., Doležel J., Macas J. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. New Phytologist. 2021;229(4):2365-2377. DOI 10.1111/nph.17003

61. O’Neill R.J.W., O’Neill M.J., Marshall Graves J.A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature. 1998;393(6680): 68-72. DOI 10.1038/29985

62. O’Neill R.J.W., Eldridge M.D.B., Graves J.A.M. Chromosome heterozygosity and de novo chromosome rearrangements in mammalian interspecies hybrids. Mamm. Genome. 2001;12(3):256-259. DOI 10.1007/s003350010270

63. Panda B.B., Sahu R.K., Sharma C.B.S.R. Cytogenetic hazards from agricultural chemicals. 2. Selective clastogenesis and spindle inhibition in some plant mitotic systems by the β-exotoxin and the general ineffectiveness of the δ-endotoxin protein of Bacillus thuringiensis. Mutat. Res. Toxicol. 1979;67(2):161-166. DOI 10.1016/0165-1218(79)90127-7

64. Pazy B., Plitmann U. Holocentric chromosome behaviour in Cuscuta (Cuscutaceae). Plant Syst. Evol. 1994;191:105-109. DOI 10.1007/BF00985345

65. Perpelescu M., Hori T., Toyoda A., Misu S., Monma N., Ikeo K., Obuse C., Fujiyama A., Fukagawa T. HJURP is involved in the expansion of centromeric chromatin. Mol. Biol. Cell. 2015;26(15): 2742-2754. DOI 10.1091/mbc.E15-02-0094

66. Schlarbaum S.E., Tsuchiya T. The chromosomes of Cunninghamia konishii, C. lanceolata, and Taiwania cryptomerioides (Taxodiaceae). Plant Syst. Evol. 1984a;145(3-4):169-181. DOI 10.1007/ BF00983946

67. Schlarbaum S.E., Tsuchiya T. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Syst. Evol. 1984b;147(1-2):29-54. DOI 10.1007/BF00984578

68. Schroeder-Reiter E., Wanner G. Chromosome centromeres: Structural and analytical investigations with high resolution scanning electron microscopy in combination with focused ion beam milling. Cytogenet. Genome Res. 2009;24(3-4):239-250. DOI 10.1159/000218129

69. Senaratne A.P., Muller H., Fryer K.A., Kawamoto M., Katsuma S., Drinnenberg I.A. Formation of the CenH3-deficient holocentromere in Lepidoptera avoids active chromatin. Curr. Biol. 2021;31(1):173- 181.e7. DOI 10.1016/j.cub.2020.09.078

70. Senaratne A.P., Cortes-Silva N., Drinnenberg I.A. Evolution of holocentric chromosomes: Drivers, diversity, and deterrents. Semin. Cell Dev. Biol. 2022;127:90-99. DOI 10.1016/j.semcdb.2022.01.003

71. Shirakawa J., Hoshi Y., Kondo K. Chromosome differentiation and genome organization in carnivorous plant family Droseraceae. Chromosome Bot. 2011a;6(4);111-119. DOI 10.3199/iscb.6.111

72. Shirakawa J, Katsuya N, Yoshikazu H. A chromosome study of two centromere differentiating Drosera species, D. arcturi and D. regia. Caryologia. 2011b;64(4):453-463. DOI 10.1080/00087114.2011.10589813

73. Stalker H.T., Dalmacio R.D. Chromosomes of Arachis species, section Arachis. J. Hered. 1981;72(6):403-408. DOI 10.1093/oxford journals.jhered.a109541

74. Sullivan K.F., Hechenberger M., Masri K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 1994;127(3):581-592. DOI 10.1083/jcb.127.3.581

75. Sullivan L.L., Boivin C.D., Mravinac B., Song I.Y., Sullivan B.A. Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosom. Res. 2011. DOI 10.1007/s10577-011-9208-5

76. Sullivan L.L., Maloney K.A., Towers A.J., Gregory S.G., Sullivan B.A. Human centromere repositioning within euchromatin after partial chromosome deletion. Chromosom. Res. 2016. DOI 10.1007/s10577-016-9536-6

77. Tachiwana H., Kagawa W., Kurumizaka H. Comparison between the CENP-A and histone H3 structures in nucleosomes. Nucleus. 2012; 3(1):6-11. DOI 10.4161/nucl.18372

78. Talbert P.B., Henikoff S. Transcribing centromeres: Noncoding RNAs and kinetochore assembly. Trends Genet. 2018;34(8):587-599. DOI 10.1016/j.tig.2018.05.001

79. Talbert P.B., Henikoff S. What makes a centromere? Exp. Cell Res. 2020;389(2):111895. DOI 10.1016/j.yexcr.2020.111895

80. Talbert P.B., Masuelli R., Tyagi A.P., Comai L., Henikoff S. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell. 2002;14(5):1053-1066. DOI 10.1105/tpc.010425

81. Talbert P.B., Kasinathan S., Henikoff S. Simple and complex centromeric satellites in Drosophila sibling species. Genetics. 2018; 208(3):977-990. DOI 10.1534/genetics.117.300620

82. Tanaka N. Chromosomal traits of Chamaelirium luteum (Melanthiaceae) with particular focus on the large heterochromatic centromeres. Taiwania. 2020;65(3):286-294. DOI 10.6165/tai.2020.65.286

83. Teixeira G.A., Barros L.A.C., de Aguiar H.J.A.C., Lopes D.M. Multiple heterochromatin diversification events in the genome of fungus-farming ants: insights from repetitive sequences. Chromosoma. 2022;131(1-2):59-75. DOI 10.1007/s00412-022-00770-7

84. van Hooff J.J., Tromer E., van Wijk L.M., Snel B., Kops G.J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 2017;18(9):1559- 1571. DOI 10.15252/embr.201744102

85. Wang Y., Wu L., Yuen K.W.Y. The roles of transcription, chromatin organisation and chromosomal processes in holocentromere establishment and maintenance. Semin.Cell Dev. Biol. 2022;127:79-89. DOI 10.1016/j.semcdb.2022.01.004

86. Winey M., Mamay C.L., O’Toole E.T., Mastronarde D.N., Giddings T.H., McDonald K.L., McIntosh J.R. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 1995;129(6):1601-1615. DOI 10.1083/jcb.129.6.1601

87. Wurster D.H., Benirschke K. Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science. 1970; 168(3937):1364-1366. DOI 10.1126/science.168.3937.1364

88. Yang F., O’Brien P.C.M., Wienberg J., Neitzel H., Lin C.C., FergusonSmith M.A. Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma. 1997;106(1):37-43. DOI 10.1007/s004120050222

89. Young A., Hill J., Murray B., Peakall R. Breeding system, genetic diversity and clonal structure in the sub-alpine forb Rutidosis leiolepis F. Muell. (Asteraceae). Biol. Conserv. 2002;106(1):71-78. DOI 10.1016/S0006-3207(01)00230-0

90. Zhang W., Friebe B., Gill B.S., Jiang J. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma. 2010;119(5):553-563. DOI 10.1007/s00412-010-0278-5


Review

Views: 395


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)