Импутация генотипов в геномных исследованиях человека
https://doi.org/10.18699/vjgb-24-70
Аннотация
Импутация – это метод, позволяющий восстанавливать недостающую информацию о генетических вариантах, которые не удалось генотипировать напрямую с помощью ДНК-микрочипов или секвенирования с низким покрытием. Импутация играет важнейшую роль в полногеномном анализе ассоциаций (genome wide associations study, GWAS). Она приводит к существенному увеличению количества изучаемых вариантов, что повышает разрешающую способность метода и увеличивает сопоставимость данных, полученных в разных когортах и/или с помощью разных технологий, что важно при проведении метаанализов. При ее выполнении информацию о генотипах в исследуемой выборке, у которой известна только часть генетических вариантов, дополняют за счет эталонной (референсной) выборки, имеющей более полные данные о генотипах (чаще всего это результаты полногеномного секвенирования). Импутация стала неотъемлемой частью геномных исследований человека благодаря преимуществам, которые она дает, а также увеличению доступности инструментов для импутации и данных референсных выборок. Обзор посвящен импутации в геномных исследованиях человека. В первом разделе приводятся описание технологий получения информации о генотипах человека и характеристика получаемых типов данных. Во втором разделе представлена методология импутации, перечисляются этапы ее проведения и соответствующие программы, дается описание наиболее популярных референсных панелей и способов оценки качества импутации. В заключении представлены примеры использования импутации в геномных исследованиях выборок из России. Настоящий обзор показывает важность проведения импутации, дает информацию о том, как ее выполнять, и систематизирует результаты ее применения на примере российских выборок.
Ключевые слова
Об авторах
А. А. БердниковаРоссия
Новосибирск
И. В. Зоркольцева
Россия
Новосибирск
Я. А. Цепилов
Россия
Новосибирск
Е. Е. Елгаева
Россия
Новосибирск
Список литературы
1. Abraham G., Qiu Y., Inouye M. FlashPCA2: principal component analysis of Biobank-scale genotype datasets. Bioinformatics. 2017; 33(17):2776-2778. https://doi.org/10.1093/bioinformatics/btx299
2. Ali A.T., Liebert A., Lau W., Maniatis N., Swallow D.M. The hazards of genotype imputation in chromosomal regions under selection: A case study using the lactase gene region. Ann. Hum. Genet. 2022; 86(1):24-33. https://doi.org/10.1111/ahg.12444
3. Anderson C.A., Pettersson F.H., Clarke G.M., Cardon L.R., Morris A.P., Zondervan K.T. Data quality control in genetic case-control association studies. Nat. Protoc. 2010;5(9):1564-1573. https://doi.org/10.1038/nprot.2010.116
4. Auton A., Abecasis G.R., Altshuler D.M., Durbin R.M., Abecasis G.R., Bentley D.R., … Min Kang H., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., Abecasis G.R. A global reference for human genetic variation. Nature. 2015;526(7571):68-74. https://doi.org/10.1038/nature15393
5. Barton A.R., Sherman M.A., Mukamel R.E., Loh P.-R. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses. Nat. Genet. 2021;53(8):1260-1269. https://doi.org/10.1038/s41588-021-00892-1
6. Bhattacharyya A. On a measure of divergence between two multinomial populations. Sankhyā: Ind. J. Stat. 1946;7(4):401-406
7. Bourke P.M., Voorrips R.E., Visser R.G.F., Maliepaard C. Tools for genetic studies in experimental populations of polyploids. Front. Plant. Sci. 2018;9:513. https://doi.org/10.3389/fpls.2018.00513
8. Brown A., Ampratwum P.O., Ray S.D. Microarray analysis. In: Encyclopedia of Toxicology. 4 ed. 2024;6:385-392. https://doi.org/10.1016/B978-0-12-824315-2.00210-4
9. Browning B.L., Zhou Y., Browning S.R. A One-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 2018;103(3):338-348. https://doi.org/10.1016/j.ajhg.2018.07.015
10. Browning B.L., Tian X., Zhou Y., Browning S.R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 2021;108(10): 1880-1890. https://doi.org/10.1016/j.ajhg.2021.08.005
11. Browning S.R., Browning B.L. Haplotype phasing: existing methods and new developments. Nat. Rev. Genet. 2011;12(10):703-714. https://doi.org/10.1038/nrg3054
12. Cann H.M., de Toma C., Cazes L., Legrand M.F., Morel V., Piouffre L., Bodmer J., … Zhu S., Weber J.L., Greely H.T., Feldman M.W., Thomas G., Dausset J., Cavalli-Sforza L.L. A human genome diversity cell line panel. Science. 2002;296(5566):261-262. https://doi.org/10.1126/science.296.5566.261b
13. Chang C.C., Chow C.C., Tellier L.C., Vattikuti S., Purcell S.M., Lee J.J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4(1):7. https://doi.org/10.1186/s13742-015-0047-8
14. Chat V., Ferguson R., Morales L., Kirchhoff T. Ultra low-coverage whole-genome sequencing as an alternative to genotyping arrays in genome-wide association studies. Front. Genet. 2022;12:790445. https://doi.org/10.3389/fgene.2021.790445
15. Check Hayden E. Genome sequencing: the third generation. Nature. 2009;457(7231):768-769. https://doi.org/10.1038/news.2009.86
16. Choi S.W., Mak T.S.-H., O’Reilly P.F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 2020;15(9):2759-2772. https://doi.org/10.1038/s41596-020-0353-1
17. Chundru V.K., Marioni R.E., Prendergast J.G.D., Vallerga C.L., Lin T., Beveridge A.J., Gratten J., Hume D.A., Deary I.J., Wray N.R., Visscher P.M., McRae A.F. Examining the impact of imputation errors on fine-mapping using DNA methylation QTL as a model trait. Genetics. 2019;212(3):577-586. https://doi.org/10.1534/genetics.118. 301861
18. Clark A.G. Inference of haplotypes from PCR-amplified samples of diploid populations. Mol. Biol. Evol. 1990;7(2):111-122. https://doi.org/10.1093/oxfordjournals.molbev.a040591
19. Collister J.A., Liu X., Clifton L. Calculating polygenic risk scores (PRS) in UK biobank: A practical guide for epidemiologists. Front. Genet. 2022;13:818574. https://doi.org/10.3389/fgene.2022.818574
20. Connell C., Fung S., Heiner C., Bridgham J., Chakerian V., Heron E., Jones B., Menchen S., Mordan W., Raff M., Recknor M., Smith L.M., Springer J., Woo S., Hunkapiller M. Automated DNA-sequence analysis. Biotechniques. 1987;5:342-348
21. Das S., Forer L., Schönherr S., Sidore C., Locke A.E., Kwong A., Vrieze S.I., Chew E.Y., Levy S., McGue M., Schlessinger D., Stambolian D., Loh P.-R., Iacono W.G., Swaroop A., Scott L.J., Cucca F., Kronenberg F., Boehnke M., Abecasis G.R., Fuchsberger C. Nextgeneration genotype imputation service and methods. Nat. Genet. 2016;48(10):1284-1287. https://doi.org/10.1038/ng.3656
22. De Marino A., Mahmoud A.A., Bose M., Bircan K.O., Terpolovsky A., Bamunusinghe V., Bohn S., Khan U., Novković B., Yazdi P.G. A comparative analysis of current phasing and imputation software. PLoS One. 2022;17(10):e0260177. https://doi.org/10.1371/journal.pone.0260177
23. Deamer D., Akeson M., Branton D. Three decades of nanopore sequencing. Nat. Biotechnol. 2016;34(5):518-524. https://doi.org/10.1038/nbt.3423
24. Delaneau O., Marchini J., Zagury J.-F. A linear complexity phasing method for thousands of genomes. Nat. Methods. 2012;9(2):179- 181. https://doi.org/10.1038/nmeth.1785
25. Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statist. Society. 1977;39(1):1-38. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
26. DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel G., Rivas M.A., Hanna M., McKenna A., Fennell T.J., Kernytsky A.M., Sivachenko A.Y., Cibulskis K., Gabriel S.B., Altshuler D., Daly M.J. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43(5):491-498. https://doi.org/10.1038/ng.806
27. Drmanac R., Sparks A.B., Callow M.J., Halpern A.L., Burns N.L., Kermani B.G., Carnevali P., … Drmanac S., Oliphant A.R., Banyai W.C., Martin B., Ballinger D.G., Church G.M., Reid C.A. Human genome sequencing using unchained base reads on selfassembling DNA nanoarrays. Science. 2010;327(5961):78-81. https://doi.org/10.1126/science.1181498
28. Fan J.B., Oliphant A., Shen R., Kermani B.G., Garcia F., Gunderson K.L., Hansen M., … Kruglyak S., Bentley D., Haas J., Rigault P., Zhou L., Stuelpnagel J., Chee M.S. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 2003;68:69-78. https://doi.org/10.1101/sqb.2003.68.69
29. Fatumo S., Mugisha J., Soremekun O.S., Kalungi A., Mayanja R., Kintu C., Makanga R., Kakande A., Abaasa A., Asiki G., Kalyesubula R., Newton R., Nyirenda M., Sandhu M.S., Kaleebu P. Uganda genome resource: A rich research database for genomic studies of communicable and non-communicable diseases in Africa. Cell Genom. 2022;2(11):100209. https://doi.org/10.1016/j.xgen.2022.100209
30. Feng Z., Peng F., Xie F., Liu Y., Zhang H., Ma J., Xing J., Guo X. Comparison of capture-based mtDNA sequencing performance between MGI and illumina sequencing platforms in various sample types. BMC Genomics. 2024;25(1):41. https://doi.org/10.1186/s12864-023-09938-6
31. Govindarajan R., Duraiyan J., Kaliyappan K., Palanisamy M. Microarray and its applications. J. Pharm. Bioallied Sci. 2012;4(6):310. https://doi.org/10.4103/0975-7406.100283
32. Gresham D., Dunham M.J., Botstein D. Comparing whole genomes using DNA microarrays. Nat. Rev. Genet. 2008;9(4):291-302. https://doi.org/10.1038/nrg2335
33. Guo Y., He J., Zhao S., Wu H., Zhong X., Sheng Q., Samuels D.C., Shyr Y., Long J. Illumina human exome genotyping array clustering and quality control. Nat. Protoc. 2014;9(11):2643-2662. https://doi.org/10.1038/nprot.2014.174
34. Hayat M.A. DNA microarrays technology. In: Handbook of Immunohistochemistry and in situ Hybridization of Human Carcinomas. 2002;49-55. https://doi.org/10.1016/S1874-5784(04)80015-1
35. Huang G.-H., Tseng Y.-C. Genotype imputation accuracy with different reference panels in admixed populations. BMC Proc. 2014;8(S1): S64. https://doi.org/10.1186/1753-6561-8-S1-S64
36. Jeon S.A., Park J.L., Park S.-J., Kim J.H., Goh S.-H., Han J.-Y., Kim S.-Y. Comparison between MGI and illumina sequencing platforms for whole genome sequencing. Genes Genom. 2021;43(7): 713-724. https://doi.org/10.1007/s13258-021-01096-x
37. Kolosov N., Rezapova V., Rotar O., Loboda A., Freylikhman O., Melnik O., Sergushichev A., Stevens C., Voortman T., Kostareva A., Konradi A., Daly M.J., Artomov M. Genotype imputation and polygenic score estimation in northwestern Russian population. PLoS One. 2022;17(6):e0269434. https://doi.org/10.1371/journal.pone.
38. 0269434 Korostin D., Kulemin N., Naumov V., Belova V., Kwon D., Gorbachev A. Comparative analysis of novel MGISEQ-2000 sequencing platform vs Illumina HiSeq 2500 for whole-genome sequencing. PLoS One. 2020;15(3):e0230301. https://doi.org/10.1371/journal.pone.0230301
39. Kurg A., Tõnisson N., Georgiou I., Shumaker J., Tollett J., Metspalu A. Arrayed primer extension: solid-phase four-color DNA resequencing and mutation detection technology. Genet. Test. 2000;4(1):1-7. https://doi.org/10.1089/109065700316408
40. Lam M., Awasthi S., Watson H.J., Goldstein J., Panagiotaropoulou G., Trubetskoy V., Karlsson R., Frei O., Fan C.-C., De Witte W., Mota N.R., Mullins N., Brügger K., Lee S.H., Wray N.R., Skarabis N., Huang H., Neale B., Daly M.J., Mattheisen M., Walters R., Ripke S. RICOPILI: rapid imputation for COnsortias PIpeLIne. Bioinformatics. 2020;36(3):930-933. https://doi.org/10.1093/bioinformatics/btz633
41. Lamy P., Andersen C.L., Wikman F.P., Wiuf C. Genotyping and annotation of Affymetrix SNP arrays. Nucleic Acids Res. 2006;34(14):e100. https://doi.org/10.1093/nar/gkl475
42. Lau W., Ali A., Maude H., Andrew T., Swallow D.M., Maniatis N. The hazards of genotype imputation when mapping disease susceptibility variants. Genome Biol. 2024;25(1):7. https://doi.org/10.1186/s13059-023-03140-3
43. Li L., Huang P., Sun X., Wang S., Xu M., Liu S., Feng Z., Zhang Q., Wang X., Zheng X., Dai M., Bi Y., Ning G., Cao Y., Wang W. The ChinaMAP reference panel for the accurate genotype imputation in Chinese populations. Cell Res. 2021;31(12):1308-1310. https://doi.org/10.1038/s41422-021-00564-z
44. Li N., Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics. 2003;165(4):2213-2233. https://doi.org/10.1093/genetics/165.4.2213
45. Li Y., Willer C., Sanna S., Abecasis G. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 2009;10(1):387-406. https://doi.org/10.1146/annurev.genom.9.081307.164242
46. Lin P., Hartz S.M., Zhang Z., Saccone S.F., Wang J., Tischfield J.A., Edenberg H.J., Kramer J.R., Goate A.M., Bierut L.J., Rice J.P. A new statistic to evaluate imputation reliability. PLoS One. 2010; 5(3):e9697. https://doi.org/10.1371/journal.pone.0009697
47. Loh P.-R., Danecek P., Palamara P.F., Fuchsberger C., Reshef Y.A., Finucane H.K., Schoenherr S., Forer L., McCarthy S., Abecasis G.R., Durbin R., L Price A. Reference-based phasing using the haplotype reference consortium panel. Nat. Genet. 2016;48(11):1443-1448. https://doi.org/10.1038/ng.3679
48. Marchini J., Howie B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 2010;11(7):499-511. https://doi.org/10.1038/nrg2796
49. Marees A.T., de Kluiver H., Stringer S., Vorspan F., Curis E., Marie Claire C., Derks E.M. A tutorial on conducting genome wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 2018;27(2). https://doi.org/10.1002/mpr.1608
50. Martin A.R., Atkinson E.G., Chapman S.B., Stevenson A., Stroud R.E., Abebe T., Akena D., … Ramesar R., Shiferaw W., Stein D.J., Teferra S., van der Merwe C., Zingela Z. Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations. Am. J. Hum. Genet. 2021;108(4):656-668. https://doi.org/10.1016/j.ajhg.2021.03.012
51. Maxam A.M., Gilbert W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA. 1977;74(2):560-564. https://doi.org/10.1073/pnas.74. 2.560
52. Mills M.C., Barban N., Tropf F.C. An Introduction to Statistical Genetic Data Analysis. Cambridge, MA: MIT Press, 2020
53. Mirzabekov A.D. Biochips in the biology and medicine of the XXI century. Vestnik Rossiyskoj Akademii Nauk = Herald of the Russian Academy of Sciences. 2003;73(5):412 (in Russian)
54. Moreland E., Borisov O.V., Semenova E.A., Larin A.K., Andryushchenko O.N., Andryushchenko L.B., Generozov E.V., Williams A.G., Ahmetov I.I. Polygenic profile of elite strength athletes. J. Strength. Cond. Res. 2022;36(9):2509-2514. https://doi.org/10.1519/JSC.0000000000003901
55. O’Connell J., Yun T., Moreno M., Li H., Litterman N., Kolesnikov A., Noblin E., … Wang W., Weldon C.H., Wilton P., Wong C., Auton A., Carroll A., McLean C.Y. A population-specific reference panel for improved genotype imputation in African Americans. Commun. Biol. 2021;4(1):1269. https://doi.org/10.1038/s42003-021-02777-9
56. Pasaniuc B., Rohland N., McLaren P.J., Garimella K., Zaitlen N., Li H., Gupta N., … Haas D.W., Liang L., Sunyaev S., Patterson N., de Bakker P.I.W., Reich D., Price A.L. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet. 2012;44(6):631-635. https://doi.org/10.1038/ng.2283
57. Pinakhina D., Yermakovich D., Vergasova E., Kasyanov E., Rukavishnikov G., Rezapova V., Kolosov, … Plotnikov N., Ilinsky V., Neznanov N., Mazo G., Kibitov A., Rakitko A., Artomov M. GWAS of depression in 4,520 individuals from the Russian population highlights the role of MAGI2 (S-SCAM) in the gut-brain axis. Front. Genet. 2022;13:972196. https://doi.org/10.3389/fgene.2022.972196
58. Price A.L., Patterson N.J., Plenge R.M., Weinblatt M.E., Shadick N.A., Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38(8):904-909. https://doi.org/10.1038/ng1847
59. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and populationbased linkage analyses. Am. J. Hum. Genet. 2007;81(3):559-575. https://doi.org/10.1086/519795
60. Ramirez A.H., Sulieman L., Schlueter D.J., Halvorson A., Qian J., Ratsimbazafy F., Loperena R., … Denny J.C., Carroll R.J., Glazer D., Harris P.A., Hripcsak G., Philippakis A., Roden D.M.; All of Us research program. The All of Us research program: Data quality, utility, and diversity. Patterns (N Y ). 2022;3(8):100570. https://doi.org/10.1016/j.patter.2022.100570
61. Rhoads A., Au K.F. PacBio Sequencing and its applications. Genomics Proteomics Bioinformatics. 2015;13(5):278-289. https://doi.org/10.1016/j.gpb.2015.08.002
62. Roshyara N.R., Kirsten H., Horn K., Ahnert P., Scholz M. Impact of pre-imputation SNP-filtering on genotype imputation results. BMC Genet. 2014;15(1):88. https://doi.org/10.1186/s12863-014-0088-5
63. Rubinacci S., Delaneau O., Marchini J. Genotype imputation using the Positional Burrows Wheeler Transform. PLoS Genet. 2020;16(11): e1009049. https://doi.org/10.1371/journal.pgen.1009049
64. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 1977;74(12):5463- 5467. https://doi.org/10.1073/pnas.74.12.5463
65. Scheet P., Stephens M. A fast and flexible statistical model for largescale population genotype data: Applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 2006;78(4): 629-644. https://doi.org/10.1086/502802
66. Shendure J., Balasubramanian S., Church G.M., Gilbert W., Rogers J., Schloss J.A., Waterston R.H. DNA sequencing at 40: past, present and future. Nature. 2017;550(7676):345-353. https://doi.org/10.1038/nature 24286
67. Smith L.M., Sanders J.Z., Kaiser R.J., Hughes P., Dodd C., Connell C.R., Heiner C., Kent S.B.H., Hood L.E. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321(6071): 674-679. https://doi.org/10.1038/321674a0
68. Stahl K., Gola D., König I.R. Assessment of imputation quality: comparison of phasing and imputation algorithms in real data. Front. Genet. 2021;12:724037. https://doi.org/10.3389/fgene.2021.724037
69. Sudlow C., Gallacher J., Allen N., Beral V., Burton P., Danesh J., Downey P., Elliott P., Green J., Landray M., Liu B., Matthews P., Ong G., Pell J., Silman A., Young A., Sprosen T., Peakman T., Collins R. UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779
70. Sudmant P.H., Rausch T., Gardner E.J., Handsaker R.E., Abyzov A., Huddleston J., Zhang Y., … Gerstein M.B., Bashir A., Stegle O., Devine S.E., Lee C., Eichler E.E., Korbel J.O. An integrated map of structural variation in 2,504 human genomes. Nature. 2015; 526(7571):75-81. https://doi.org/10.1038/nature15394
71. Taliun D., Harris D.N., Kessler M.D., Carlson J., Szpiech Z.A., Torres R., … Cupples L.A., Laurie C.C., Jaquish C.E., Hernandez R.D., O’Connor T.D., Abecasis G.R. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021; 590(7845):290-299. https://doi.org/10.1038/s41586-021-03205-y
72. The Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 2016;48:1279- 1283. https://doi.org/10.1038/ng.3643
73. Usoltsev D., Kolosov N., Rotar O., Loboda A., Boyarinova M., Moguchaya E., Kolesova E., … Laiho P., Kostareva A., Konradi A., Shlyakhto E., Palotie A., Daly M.J., Artomov M. Understanding complex trait susceptibilities and ethnical diversity in a sample of 4,145 Russians through analysis of clinical and genetic data. bioRxiv. 2023. https://doi.org/10.1101/2023.03.23.534000
74. Wall J.D., Stawiski E.W., Ratan A., Kim H.L., Kim C., Gupta R., Suryamohan K., … Radha V., Mohan V., Majumder P.P., Seshagiri S., Seo J.-S., Schuster S.C., Peterson A.S. The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature. 2019; 576(7785):106-111. https://doi.org/10.1038/s41586-019-1793-z
75. Wang D.G., Fan J.-B., Siao C.-J., Berno A., Young P., Sapolsky R., Ghandour G., Perkins N., Winchester E., Spencer J., Kruglyak L., Stein L., Hsie L., Topaloglou T., Hubbell E., Robinson E., Mittmann M., Morris M.S., Shen N., Kilburn D., Rioux J., Nusbaum C., Rozen S., Hudson T.J., Lipshutz R., Chee M., Lander E.S. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280(5366):1077- 1082. https://doi.org/10.1126/science.280.5366.1077
76. Wang Q.S., Huang H. Methods for statistical fine-mapping and their applications to auto-immune diseases. Semin. Immunopathol. 2022; 44(1):101-113. https://doi.org/10.1007/s00281-021-00902-8
77. Weale M.E. A survey of current software for haplotype phase inference. Hum. Genomics. 2004;1(2):141. https://doi.org/10.1186/1479-7364-1-2-141
78. Weng Z.-Q., Saatchi M., Schnabel R.D., Taylor J.F., Garrick D.J. Recombination locations and rates in beef cattle assessed from parentoffspring pairs. Gen. Select. Evol. 2014;46(1):34. https://doi.org/10.1186/ 1297-9686-46-34
79. Wu D., Dou J., Chai X., Bellis C., Wilm A., Shih C.C., … Wong W.-C., Xie Z., Yeo K.K., Zhang L., Zhai W., Zhao Y. Large-scale wholegenome sequencing of three diverse Asian populations in Singapore. Cell. 2019;179(3):736-749.e15. https://doi.org/10.1016/j.cell.2019.09.019
80. Yang H.-C., Lin H.-C., Kang M., Chen C.-H., Lin C.-W., Li L.-H., Wu J.-Y., Chen Y.-T., Pan W.-H. SAQC: SNP array quality control. BMC Bioinformatics. 2011;12(1):100. https://doi.org/10.1186/1471-2105-12-100
81. Yoo S.-K., Kim C.-U., Kim H.L., Kim S., Shin J.-Y., Kim N., Yang J.S.W., Lo K.-W., Cho B., Matsuda F., Schuster S.C., Kim C., Kim J.-I., Seo J.-S. NARD: whole-genome reference panel of 1779 Northeast Asians improves imputation accuracy of rare and lowfrequency variants. Genome Med. 2019;11(1):64. https://doi.org/10.1186/ s13073-019-0677-z
82. Yu K., Das S., LeFaive J., Kwong A., Pleiness J., Forer L., Schönherr S., Fuchsberger C., Smith A.V., Abecasis G.R. Meta-imputation: An efficient method to combine genotype data after imputation with multiple reference panels. Am. J. Hum. Genet. 2022;109(6):1007-1015. https://doi.org/10.1016/j.ajhg.2022.04.002
83. Zhao S., Jing W., Samuels D.C., Sheng Q., Shyr Y., Guo Y. Strategies for processing and quality control of Illumina genotyping arrays. Brief. Bioinform. 2018;19(5):765-775. https://doi.org/10.1093/bib/bbx012