COMPARISON OF METHODS FOR OBTAINING GENETIC DIVERSITY FOR BREEDING WINTER-HARDY WHEAT IN SIBERIA
Abstract
High winter hardiness requires two features: (1) a duration of deep rest comparable to the duration of wintering and (2) high frost resistance. An interdisciplinary approach to studying the mechanisms governing the formation of winter hardiness permits one to develop new methods for increasing genetic diversity, to improve well-known ones, and to compare their efficiencies. Such diversity, in particular, is essential for breeding wheat varieties that would meet the conditions of Siberia. Treatment of shoots of winter varieties with gibberellin A 3 yielded families (lines) with 85–100 % survival under deep snow cover in the foreststeppe zone. The survival of original varieties under the same conditions was lower by an order of magnitude. Gibberellin stress in two consecutive generations induced a long deep rest in some survivors, comparable to the duration of wintering, which ensured high survival of their offspring. These changes were inherited. The harder was the selection for the duration of deep rest in «gibberellic» lines, the higher proportion of them was constituted by highly frost-resistant forms that survived under conditions of poor snow cover in the steppe. When both parents had at least one component of high winter hardiness, the crosses yielded the highest proportion of highly frost-resistant forms. Inbred clones of intermediate wheatgrass Agropyron glaucum were good donors of both components of winter hardiness when crossed to wheat. Hereditary changes in wheat accessions in two consecutive generations both in the forest-steppe under the influence of gibberellins and in the steppe under the effect of moderate to severe frosts are likely to have a regulatory epigenetic nature.
About the Author
V. E. KozlovRussian Federation
References
1. Барашкова Э.А., Виноградова В.В. Оценка зимо- и морозостойкости полевых культур // Диагностика устойчивости растений к стрессовым воздействиям. Л.: ВИР, 1988. С. 128–154.
2. Васильев И.М. Зимовка растений. М.: Изд-во АН СССР, 1956. 308 с.
3. Козлов В.Е. Исследование признака зимостойкости у озимой пшеницы в условиях Сибири. Генетические и селекционные аспекты: Автореф. дис. … канд. биол. наук. Новосибирск: ИЦиГ СО РАН, 1997. 16 с.
4. Козлов В.Е., Чекуров В.М. Связь между морфологией растений озимой пшеницы и зимостойкостью при изменении содержания рост- регулирующих веществ // Роль фитогормонов в проявлении некоторых признаков у растений: Сб. науч. тр. Новосибирск: ИЦиГ СО АН СССР, 1983. С. 85–96.
5. Чекуров В.М., Козлов В.Е. Низкий метаболизм и высокая морозостойкость – важные компоненты выживаемости озимой пшеницы в Сибири // 1-я Центрально-Азиатская конференция по пшенице, г. Алматы, 10–13 июня 2003. Материалы. Алматы: CIMMYT, 2003. С. 222.
6. Чекуров В.М., Козлов В.Е., Титков И.П., Митрофанов Н.Г. Проблемы и методические подходы к созданию сортов озимой пшеницы для Сибири // Генетические методы в селекции растений. Новосибирск: Наука, 1992. С. 180–210.
7. Яковлев Н.Н. Климат и зимостойкость озимой пшеницы. Л.: Гидрометеоиздат, 1966. 419 с.
8. Chekurov V.M., Kozlov V.E. Winter wheat’s main survival mechanisms in Siberia: Low metabolic rate and high frost tolerance / A.A. Morgunov, K.G. McHab. Campbell and Poroda // Increasing Wheat Production in Central Asia through Science and Cooperation: Proc. of the First Central Asia Wheat Conf., Almaty, Kazakhstan: CIMMYT, 2005. P. 118–121.
9. Lee Byeong-ha, Henderson D.A., Zhu J.-K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1 // The Plant Cell. 2005. V. 17. P. 3155–3175.
10. Kozlov V.E. Comparison of methods of obtaining the genetic diversity for the selection of wheat to winter hardiness in Siberia // The Intern. Conf. «Wheat genetic resources and genomics» (WGRG), Novosibirsk, Russia. August 28–September 1, 2011. Novosibirsk: Inst. Cytol. Genet, 2011. P. 19.