1. Береговой Н.А., Сорокина Н.С., Старостина М.В., Колосова Н.Г. Возрастные особенности формирования длительной посттетанической потенциации у крыс линии OXYS. Бюл. эксперим. биол. мед. 2011;151(1):82-86.
2. Колосова Н.Г., Акулов А.Е., Стефанова Н.А., Мошкин М.П., Савелов А.А., Коптюг И.В., Панов А.В., Вавилин В.А. Влияние малата на развитие индуцированных ротеноном изменений мозга у крыс Вистар и OXYS: МРТ исследование. Докл. АН. 2011;437(2):273-276.
3. Колосова Н.Г., Стефанова Н.А., Корболина Е.Е., Фурсова А.Ж., Кожевникова О.С. Крысы OXYS - генетическая модель преждевременного старения и связанных с ним заболеваний. Усп. геронтологии. 2014;27(2):336-340.
4. Шевелев О.Б., Рыкова В.И., Федосеева Л.А., Леберфарб Е.Ю., Дымшиц Г.М., Колосова Н.Г. Экспрессия Ext1, Ext2 и гепараназы в мозге преждевременно стареющих крыс OXYS в период раннего онтогенеза и развития нейродегенеративных изменений. Biochemistry (Moscow). 2012;77(1):71-78.
5. Anders S., Huber W. Differential expression analysisforsequence count data. Genome Biol. 2010;11(10):R106. https://doi.org/10.1186/gb-2010-1110-r106
6. Bertram L., McQueen M.B., Mullin K., Blacker D., Tanzi R.E. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 2007;39(1):17-23.
7. Cho J.H., Johnson G.V. Glycogen synthase kinase 3 beta induces caspase-cleaved tau aggregation in situ. J. Biol. Chem. 2004;279(52): 54716-54723.
8. Chung C.W., Song Y.H., Kim I.K., Yoon W.J., Ryu B.R., Jo D.G., Woo H.N., Kwon Y.K., Kim H.H., Gwag B.J., Mook-Jung I.H., Jung Y.K. Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol Dis. 2001;8(1):162-172.
9. Kanemitsu H., Tomiyama T., Mori H. Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci Lett. 2003;350(2):113-116.
10. Kolosova N.G., Stefanova N.A., Sergeeva S.V. OXYS rats: a prospective model for evaluation of antioxidant availability in prevention and therapy of accelerated aging and age-related cognitive decline. Eds Q. Gariépy, R. Ménard. Handbook of Cognitive Aging: Causes, Processes. N.Y.: Nova Sci. Publ., 2009.
11. Korbolina E.E., Kozhevnikova O.S., Stefanova N.A., Kolosova N.G. Quantitative trait loci on chromosome 1 for cataract and AMD-like retinopathy in senescence-accelerated OXYS rats. Aging (Albany NY). 2012;4(1):49-59.
12. Kozhevnikova O.S., Korbolina E.E., Ershov N.I., Kolosova N.G. Rat retinal transcriptome: effects of aging and AMD-like retinopathy. Cell Cycle. 2013;12(11):1745-1761. https://doi.org/10.4161/cc.24825
13. Krstic D., Knuesel I. Deciphering the mechanism underlying late-on-set Alzheimer disease. Nat. Rev. Neurol. 2013;9(1):25-34. https://doi.org/10.1038/nrneurol.2012.236
14. Maeda N., Ishii M., Nishimura K., Kamimura K. Functions of chondroitin sulfate and heparan sulfate in the developing brain. Neurochem. Res. 2011;36(7):1228-1240. https://doi.org/10.1007/s11064-010-0324-y
15. Markova E.V., Obukhova L.A., Kolosova N.G. Parameters of cell immune response in Wistar and OXYS rats and their behavior in the open field test. Bul. Exp. Biol. Med. 2003;136(6):588-590.
16. Mawuenyega K.G., Sigurdson W., Ovod V., Munsell L., Kasten T., Morris J.C., Yarasheski K.E., Bateman R.J. Decreased сlearance of CNS beta-Amyloid in Alzheimer’s disease. Science. 2010;330(6012): 1774. https://doi.org/10.1126/science.1197623
17. Morley J.E., Armbrecht H.J., Farr S.A., Kumar V.B. The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease. Biochim. Biophys Acta. 2012;1822(5):650-656. https://doi.org/10.1016/j.bbadis.2011.11.015
18. Obukhova L.A., Skulachev V.P., Kolosova N.G. Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats. Aging (Albany N.Y.). 2009;1(4):389-401.
19. Rykova V.I., Leberfarb E.Y., Stefanova N.A., Shevelev O.B., Dymshits G.M., Kolosova N.G. Brain proteoglycans in postnatal development and during behavior decline in senescence-accelerated OXYS rats. Adv. Gerontol. 2011;24(2):234-243.
20. Querfurth H.W., LaFerla F.M. Alzheimer’s disease. N. Engl. J. Med. 2010;362(4):329-344. https://doi.org/10.1056/NEJMra0909142
21. Scheff S.W., Neltner J.H., Nelson P.T. Issynaptic loss a unique hallmark of Alzheimer’s disease? Biochem. Pharmacol. 2014;88(4):517-528. https://doi.org/10.1016/j.bcp.2013.12.028
22. Shinohara M., Fujioka S., Murray M.E., Wojtas A., Baker M., RoveletLecrux A., Rademakers R., Das P., Parisi J.E., Graff-Radford N.R., Petersen R.C., Dickson D.W., Bu G. Regional distribution ofsynaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer’s disease. Brain. 2014;137(Pt 5): 1533-1549. https://doi.org/10.1093/brain/awu046
23. Stefanova N.A., Fursova A., Kolosova N.G. Behavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats. J. Alzheimers Dis. 2010;21(2): 479-491. https://doi.org/10.3233/JAD-2010-091675
24. Stefanova N.A., Kozhevnikova O.S., Vitovtov A.O., Maksimova K.Y., Logvinov S.V., Rudnitskaya E.A., Korbolina E.E., Muraleva N.A., Kolosova N.G. Senescence-accelerated OXYS rats: A model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease. Cell Cycle. 2014a;13(6):898-909. https://doi.org/10.4161/cc.28255
25. Stefanova N.A., Maksimova K.Y., Kiseleva E., Rudnitskaya E.A., Muraleva N.A., Kolosova N.G. Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology. J. Pineal Res. 2015b;59(2):163-177. https://doi.org/10.1111/jpi.12248
26. Stefanova N.A., Muraleva N.A., Korbolina E.E., Kiseleva E., Maksimova K.Y., Kolosova N.G. Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats. Oncotarget. 2015a;6(3):1396-1413.
27. Stefanova N.A., Muraleva N.A., Skulachev V.P., Kolosova N.G. Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1. J. Alzheimers Dis. 2014b;38(3):681-694. https://doi.org/10.3233/JAD131034
28. Trapnell C., Pachter L., Salzberg S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105-1111. https://doi.org/10.1093/bioinformatics/btp120
29. Winkler J.M., Fox H.S. Transcriptome meta-analysis reveals a central role for sex steroids in the degeneration of hippocampal neurons in Alzheimer’s disease. BMC Syst. Biol. 2013;7:51. https://doi.org/10.1186/1752-0509-7-51