Candidate SNP markers of changes in the expression levels of the human SCN9A gene as a hub gene for pain generation, perception, response and anesthesia
https://doi.org/10.18699/vjgb-24-89
Abstract
In this work, we for the first time performed a comprehensive bioinformatics analysis of 568 human genes that, according to the NCBI Gene database as on September 15, 2024, were associated with pain generation, perception and anesthesia. The SCN9A gene encoding the sodium voltage-gated channel α subunit 9 and expressed in sensory neurons for transferring signals to the central nervous system about tissue damage was the only one involved in all the processes of interest at once as a hub gene. First, with our tool called OrthoWeb, we estimated the phylostratigraphic age indices (PAIs) for each of the genes, that is, identified the taxon of the most recent common ancestor of the organisms for which that gene has been sequenced. The mean PAI for all genes under study, including SCN9A as a hub gene for pain generation, perception, response and anesthesia, was ‘4’. On the evolutionary scale by the Kyoto Encyclopedia of Genes and Genomes (KEGG), the ancestor is the phylum Chordata, some of the most ancient of which evolved the central and the peripheral nervous system. Next, with our tool called ANDSystem, we found that phosphorylation of ion channels is a centerpiece in pain generation, perception, response and anesthesia, on which the efficiency of signal transduction from the peripheral to the central system depends. This conclusion was consistent with literature data on a key role an efficient signal transduction from the peripheral to the central system from the peripheral to the central system for adjusting the human circadian rhythm through detection of a change from the dark of night to the light of day and for identification of the direction of the source of sound by auditory brainstem nuclei, for generating the response to cold stress and for physical coordination. 21 candidate SNP marker of significant SCN9A over- and underexpression. Finally, the ratio of SCN9A upregulating to downregulating SNPs was compared to that for all known human genes estimated by the 1000 Genomes Project Consortium. It was found that SCN9A as a hub gene for pain generation, perception, pain response and anesthesia is acted on by natural selection against its downregulation, to keep the nervous system highly informed on the status of the organism and the environment.
Keywords
About the Authors
P. A. DotsenkoRussian Federation
Novosibirsk
K. A. Zolotareva
Russian Federation
Novosibirsk
R. A. Ivanov
Russian Federation
Novosibirsk
I. V. Chadaeva
Russian Federation
Novosibirsk
N. L. Podkolodnyy
Russian Federation
Novosibirsk
V. A. Ivanisenko
Russian Federation
Novosibirsk
P. S. Demenkov
Russian Federation
Novosibirsk
S. A. Lashin
Russian Federation
Novosibirsk
M. P. Ponomarenko
Russian Federation
Novosibirsk
References
1. Genomes Project Consortium; Abecasis G.R., Auton A., Brooks L.D., DePristo M.A., Durbin R.M., Handsaker R.E., Kang H.M., Marth G.T., McVean G.A. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56-65. doi 10.1038/nature11632
2. Baker M.D., Nassar M.A. Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels. Pflugers Arch. 2020; 472(7):865-880. doi 10.1007/s00424-020-02419-9
3. Bell E.A., Boehnke P., Harrison T.M., Mao W.L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA. 2015;112(47):14518-14521. doi 10.1073/pnas.1517557112
4. Bennett D.L., Woods C.G. Painful and painless channelopathies. Lancet Neurol. 2014;13(6):587-599. doi 10.1016/S1474-4422(14)70024-9
5. Brown G.R., Hem V., Katz K.S., Ovetsky M., Wallin C., Ermolaeva O., Tolstoy I., Tatusova T., Pruitt K.D., Maglott D.R., Murphy T.D. Gene: a gene-centered information resource at NCBI. Nucleic Acids Res. 2015;43(D1):D36-D42. doi 10.1093/nar/gku1055
6. Chae K.S., Ko G.Y., Dryer S.E. Tyrosine phosphorylation of cGMPgated ion channels is under circadian control in chick retina photoreceptors. Invest. Ophthalmol. Vis. Sci. 2007;48(2):901-906. doi 10.1167/iovs.06-0824
7. Chatterjee H.J., Ho S.Y., Barnes I., Groves C. Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol. Biol. 2009;9:259. doi 10.1186/1471-2148-9-259
8. Cregg R., Cox J.J., Bennett D.L., Wood J.N., Werdehausen R. Mexiletine as a treatment for primary erythromelalgia: normalization of biophysical properties of mutant L858F NaV1.7 sodium channels. Br. J. Pharmacol. 2014;171(19):4455-4463. doi 10.1111/bph.12788
9. Cui J.H., Kim W.M., Lee H.G., Kim Y.O., Kim C.M., Yoon M.H. Antinociceptive effect of intrathecal cannabinoid receptor agonist WIN 55,212-2 in a rat bone tumor pain model. Neurosci. Lett. 2011; 493(3):67-71. doi 10.1016/j.neulet.2010.12.052
10. Dabby R. Pain disorders and erythromelalgia caused by voltage-gated sodium channel mutations. Curr. Neurol. Neurosci. Rep. 2012;12(1): 76-83. doi 10.1007/s11910-011-0233-8
11. Datta P.M. Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian) Tiki formation, South Rewa Gondwana Basin, India. J. Vertebr. Paleontol. 2005;25(1):200-207. doi 10.1671/0272-4634(2005)025[0200:EMWTEU]2.0.CO;2
12. Day I.N. dbSNP in the detail and copy number complexities. Hum. Mutat. 2010;31(1):2-4. doi 10.1002/humu.21149
13. Dib-Hajj S.D., Cummins T.R., Black J.A., Waxman S.G. From genes to pain: Nav1.7 and human pain disorders. Trends Neurosci. 2007; 30(11):555-463. doi 10.1016/j.tins.2007.08.004
14. Diogo R. The Origin of Higher Clades: Osteology, Myology, Phylo geny and Evolution of Bony Fishes and the Rise of Tetrapods. NY: CRC Press, 2007. doi 10.1201/9780429063978
15. Drenth J.P., Waxman S.G. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J. Clin. Invest. 2007;117(12):3603-3609. doi 10.1172/JCI33297
16. Dunn R.H., Rose K.D., Rana R.S., Kumar K., Sahni A., Smith T. New euprimate postcrania from the early Eocene of Gujarat, India, and the strepsirrhine-haplorhine divergence. J. Hum. Evol. 2016;99: 25-51. doi 10.1016/j.jhevol.2016.06.006
17. Eijkenboom I., Sopacua M., Otten A.B.C., Gerrits M.M., Hoeijma kers J.G.J., Waxman S.G., Lombardi R., Lauria G., Merkies I.S.J., Smeets H.J.M., Faber C.G., Vanoevelen J.M.; PROPANE Study Group. Expression of pathogenic SCN9A mutations in the zebrafish: a model to study small-fiber neuropathy. Exp. Neurol. 2019;311: 257-264. doi 10.1016/j.expneurol.2018.10.008
18. Filonov S.V., Podkolodnyy N.L., Podkolodnaya O.A., Tverdokhleb N.N., Ponomarenko P.M., Rasskazov D.A., Bogomolov A.G., Ponomarenko M.P. Human_SNP_TATAdb: a database of SNPs that statistically significantly change the affinity of the TATA-binding protein to human gene promoters: genome-wide analysis and use cases. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(7):728-736. doi 10.18699/VJGB23-85
19. Garate J., Maimo-Barcelo A., Bestard-Escalas J., Fernandez R., Pe rez-Romero K., Martinez M.A., Payeras M.A., Lopez D.H., Fernandez J.A., Barcelo-Coblijn G. A drastic shift in lipid adducts in colon cancer detected by MALDI-IMS exposes alterations in specific K+ channels. Cancers (Basel). 2021;13(6):1350. doi 10.3390/cancers13061350
20. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43(D1):D1049-1056. doi 10.1093/nar/gku1179
21. Grieco T.M., Afshari F.S., Raman I.M. A role for phosphorylation in the maintenance of resurgent sodium current in cerebellar purkinje neurons. J. Neurosci. 2002;22(8):3100-3107. doi 10.1523/jneurosci.22-08-03100.2002
22. Haldane J.B.S. The cost of natural selection. J. Genet. 1957;55:511-524. doi 10.1007/bf02984069
23. Harrison T. Catarrhine origins. In: A Companion to Paleoanthropology. NY: Blackwell Publ. Ltd., 2013;376-396
24. Hey J. The ancestor’s tale A pilgrimage to the dawn of evolution. J. Clin. Invest. 2005;115(7):1680. doi 10.1172/JCI25761
25. Hisama F.M., Dib-Hajj S.D., Waxman S.G. SCN9A Neuropathic pain syndromes. 2006 May 6 [Updated 2020 Jan 23]. In: GeneReviews®. [Internet]. Seattle (WA): Univ. of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1163/
26. Hoeijmakers J.G., Merkies I.S., Gerrits M.M., Waxman S.G., Faber C.G. Genetic aspects of sodium channelopathy in small fiber neuropathy. Clin. Genet. 2012;82(4):351-358. doi 10.1111/j.1399-0004.2012.01937.x
27. Holland L.Z., Holland N.D. Chordate origins of the vertebrate central nervous system. Curr. Opin. Neurobiol. 1999;9(5):596-602. doi 10.1016/S0959-4388(99)00003-3
28. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl.2):S2. doi 10.1186/1752-0509-9-S2-S2
29. Iyer V., Edelman E.R., Lilly L.S. Basic cardiac structure and function. In: Pathophysiology of Heart Disease. Baltimore: Lippincott Williams & Wilkins, 2007;1-28
30. Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. doi 10.1093/nar/28.1.27
31. Kasowski M., Grubert F., Heffelfinger C., Hariharan M., Asabere A., Waszak S.M., Habegger L., Rozowsky J., Shi M., Urban A.E., Hong M.Y., Karczewski K.J., Huber W., Weissman S.M., Gerstein M.B., Korbel J.O., Snyder M. Variation in transcription factor binding among humans. Science. 2010;328(5975):232-235. doi 10.1126/science.1183621
32. Kerth C.M., Hautvast P., Korner J., Lampert A., Meents J.E. Phosphorylation of a chronic pain mutation in the voltage-gated sodium channel Nav1.7 increases voltage sensitivity. J. Biol. Chem. 2021; 296:100227. doi 10.1074/jbc.RA120.014288
33. Kim D.T., Rossignol E., Najem K., Ospina L.H. Bilateral congenital corneal anesthesia in a patient with SCN9A mutation, confirmed primary erythromelalgia, and paroxysmal extreme pain disorder. J. AAPOS. 2015;19(5):478-479. doi 10.1016/j.jaapos.2015.05.015
34. Kimura M. Evolutionary rate at the molecular level. Nature. 1968; 217(5129):624-626. doi 10.1038/217624a0
35. Klein A.A., Meek T., Allcock E., Cook T.M., Mincher N., Morris C., Nimmo A.F., Pandit J.J., Pawa A., Rodney G., Sheraton T., Young P. Recommendations for standards of monitoring during anaesthesia and recovery 2021: Guideline from the Association of Anaesthetists. Anaesthesia. 2021;76(9):1212-1223. doi 10.1111/anae.15501
36. Kumar V., Hallstrom B.M., Janke A. Coalescent-based genome analyses resolve the early branches of the euarchontoglires. PLoS One. 2013;8(4):e60019. doi 10.1371/journal.pone.0060019
37. Kwak S.G., Kim J.H. Central limit theorem: the cornerstone of modern statistics. Korean J. Anesthesiol. 2017;70(2):144-156. doi 10.4097/kjae.2017.70.2.144
38. Landrum M.J., Lee J.M., Riley G.R., Jang W., Rubinstein W.S., Church D.M., Maglott D.R. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(D1):D980-D985. doi 10.1093/nar/gkt1113
39. Leander B.S. Predatory protists. Curr. Biol. 2020;30(10):R510-R516. doi 10.1016/j.cub.2020.03.052
40. Lowy-Gallego E., Fairley S., Zheng-Bradley X., Ruffier M., Clarke L., Flicek P.; 1000 Genomes Project Consortium. Variant calling on the GRCh38 assembly with the data from phase three of the 1000 Genomes Project. Wellcome Open Res. 2019;4:50. doi 10.12688/wellcomeopenres.15126.2
41. Lu Z. PubMed and beyond: a survey of web tools for searching bio medical literature. Database (Oxford). 2011;2011:baq036. doi 10.1093/database/baq036
42. Lucas D.N., Russell R., Bamber J.H., Elton C.D. Recommendations for standards of monitoring during anaesthesia and recovery 2021. Anaesthesia. 2021;76(10):1426-1427. doi 10.1111/anae.15528
43. Luo Z.X., Yuan C.X., Meng Q.J., Ji Q. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature. 2011; 476(7361):442-445. doi 10.1038/nature10291
44. Maloof A.C., Porter S.M., Moore J.L., Dudas F.O., Bowring S.A., Higgins J.A., Fike D.A., Eddy M.P. The earliest Cambrian record of animals and ocean geochemical change. Geol. Soc. Am. Bull. 2010a;122(11-12):1731-1774. doi 10.1130/B30346.1
45. Maloof A.C., Rose C.V., Beach R., Samuels B.M., Calmet C.C., Erwin D.H., Poirier G.R., Yao N., Simons F.J. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nat. Geosci. 2010b;3:653-659. doi 10.1038/ngeo934
46. Mi H., Ebert D., Muruganujan A., Mills C., Albou L.P., Mushaya maha T., Thomas P.D. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021;49(D1):D394-D403. doi 10.1093/nar/gkaa1106
47. Morozova O.V., Alekseeva A.E., Sashina T.A., Brusnigina N.F., Epifanova N.V., Kashnikov A.U., Zverev V.V., Novikova N.A. Phylodynamics of G4P[8] and G2P[4] strains of rotavirus A isolated in Russia in 2017 based on full-genome analyses. Virus Genes. 2020; 56(5):537-545. doi 10.1007/s11262-020-01771-3
48. Mustafin Z., Mukhin A., Afonnikov D., Matushkin Y., Lashin S. OrthoWeb – web application for macro- and microevolutionary analysis of genes. In: Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2020). Novosibirsk, 2020; 228-229. doi 10.18699/BGRS/SB-2020-145
49. Ogata G., Partida G.J., Fasoli A., Ishida A.T. Calcium/calmodulin-dependent protein kinase II associates with the K+ channel isoform Kv4.3 in adult rat optic nerve. Front. Neuroanat. 2022;16:958986. doi 10.3389/fnana.2022.958986
50. Palomes-Borrajo G., Badia J., Navarro X., Penas C. Nerve excitabi lity and neuropathic pain is reduced by BET protein inhibition after spared nerve injury. J. Pain. 2021;22(12):1617-1630. doi 10.1016/j.jpain.2021.05.005
51. Ponomarenko M., Rasskazov D., Arkova O., Ponomarenko P., Suslov V., Savinkova L., Kolchanov N. How to use SNP_TATA_Comparator to find a significant change in gene expression caused by the regulatory SNP of this gene’s promoter via a change in affinity of the TATA-binding protein for this promoter. Biomed. Res. Int. 2015; 2015:359835. doi 10.1155/2015/359835
52. Raja S.N., Carr D.B., Cohen M., Finnerup N.B., Flor H., Gibson S., Keefe F.J., Mogil J.S., Ringkamp M., Sluka K.A., Song X.J., Stevens B., Sullivan M.D., Tutelman P.R., Ushida T., Vader K. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain. 2020;161(9): 1976-1982. doi 10.1097/j.pain.0000000000001939
53. Raney B.J., Barber G.P., Benet-Pagès A., Casper J., Clawson H., Cline M.S., Diekhans M., Fischer C., Navarro Gonzalez J., Hi ckey G., Hinrichs A.S., Kuhn R.M., Lee B.T., Lee C.M., Le Mer cier P., Miga K.H., Nassar L.R., Nejad P., Paten B., Perez G., Schmel ter D., Speir M.L., Wick B.D., Zweig A.S., Haussler D., Kent W.J., Haeussler M. The UCSC Genome Browser database: 2024 update. Nucleic Acids Res. 2024;52(D1):D1082-D1088. doi 10.1093/nar/gkad987
54. Renthal W. Pain genetics. In: Rosenberg R.N., Pascual J.M. (Eds) Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease. Amsterdam: Elsevier, 2020;397-410. doi 10.1016/b978-0-12-813866-3.00023-0
55. Samet H. A top-down quadtree traversal algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 1985;7(1):94-98. doi 10.1109/tpami.1985.4767622
56. Scerri E.M.L., Thomas M.G., Manica A., Gunz P., Stock J.T., Strin ger C., Grove M., Groucutt H.S., Timmermann A., Rightmire G.P., d’Errico F., Tryon C.A., Drake N.A., Brooks A.S., Dennell R.W., Durbin R., Henn B.M., Lee-Thorp J., deMenocal P., Petraglia M.D., Thompson J.C., Scally A., Chikhi L. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 2018;33(8):582-594. doi 10.1016/j.tree.2018.05.005
57. Schrenk F., Kullmer O., Bromage T. The earliest putative homo fossils. In: Henke W., Tattersall I. (Eds) Handbook of Paleoanthropology. Berlin: Springer, 2014;1-19. doi 10.1007/978-3-540-33761-4_52
58. Shao J., Cao J., Wang J., Ren X., Su S., Li M., Li Z., Zhao Q., Zang W. MicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat. Mol. Pain. 2016; 12:1744806916671523. doi 10.1177/1744806916671523
59. Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216-W221. doi 10.1093/nar/gkac194
60. Shields S.D., Deng L., Reese R.M., Dourado M., Tao J., Foreman O., Chang J.H., Hackos D.H. Insensitivity to pain upon adult-onset deletion of Nav1.7 or its blockade with selective inhibitors. J. Neurosci. 2018;38(47):10180-10201. doi 10.1523/jneurosci.1049-18.2018
61. Shu D.-G., Luo H.-L., Conway-Morris S., Zhang X.-L., Hu S.-X., Chen L., Han J., Zhu M., Li Y., Chen L.-Z. Lower Cambrian vertebrates from south China. Nature. 1999;402(6757):42-46. doi 10.1038/46965
62. Shuyuan L., Haoyu C. Mechanism of Nardostachyos Radix et Rhizoma–Salidroside in the treatment of premature ventricular beats based on network pharmacology and molecular docking. Sci. Rep. 2023;13(1):20741. doi 10.1038/s41598-023-48277-0
63. Sokolov M.V., Henrich-Noack P., Raynoschek C., Franzen B., Larsson O., Main M., Dabrowski M. Co-expression of β subunits with the voltage-gated sodium channel NaV1.7: the importance of subunit association and phosphorylation and their effects on channel pharmacology and biophysics. J. Mol. Neurosci. 2018;65(2):154-166. doi 10.1007/s12031-018-1082-6
64. Song P., Yang Y., Barnes-Davies M., Bhattacharjee A., Hamann M., Forsythe I.D., Oliver D.L., Kaczmarek L.K. Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Nat. Neurosci. 2005;8(10):1335-1342. doi 10.1038/nn1533
65. Stajich J.E., Block D., Boulez K., Brenner S.E., Chervitz S.A., Dagdigian C., Fuellen G., Gilbert J.G., Korf I., Lapp H., Lehvaslaiho H., Matsalla C., Mungall C.J., Osborne B.I., Pocock M.R., Schattner P., Senger M., Stein L.D., Stupka E., Wilkinson M.D., Birney E. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002;12(10):1611-1618. doi 10.1101/gr.361602
66. Stamboulian S., Choi J.S., Ahn H.S., Chang Y.W., Tyrrell L., Black J.A., Waxman S.G., Dib-Hajj S.D. ERK1/2 mitogen-activated protein kinase phosphorylates sodium channel Nav1.7 and alters its gating properties. J. Neurosci. 2010;30(5):1637-1647. doi 10.1523/jneurosci.4872-09.2010
67. Stephenson J.B. Syncopes and other paroxysmal events. Handb. Clin. Neurol. 2013;112:861-866. doi 10.1016/B978-0-444-52910-7. 00007-6
68. Sun G.L., Shen W., Wen J.F. Triosephosphate isomerase genes in two trophic modes of euglenoids (euglenophyceae) and their phylogenetic analysis. J. Eukaryot. Microbiol. 2008;55(3):170-177. doi 10.1111/j.1550-7408.2008.00324.x
69. Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., Gable A.L., Fang T., Doncheva N.T., Pyysalo S., Bork P., Jensen L.J., von Mering C. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638-D646. doi 10.1093/nar/gkac1000
70. Taub D.G., Woolf C.J. Age-dependent small fiber neuropathy: mechanistic insights from animal models. Exp. Neurol. 2024;377:114811. doi 10.1016/j.expneurol.2024.114811
71. Warde-Farley D., Donaldson S.L., Comes O., Zuberi K., Badrawi R., Chao P., Franz M., Grouios C., Kazi F., Lopes C.T., Maitland A., Mostafavi S., Montojo J., Shao Q., Wright G., Bader G.D., Morris Q. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(W2):W214-W220. doi 10.1093/nar/gkq537
72. Wu B., Zhang Y., Tang H., Yang M., Long H., Shi G., Tang J., Shi X. A novel SCN9A mutation (F826Y) in primary erythromelalgia alters the excitability of Nav1.7. Curr. Mol. Med. 2017;17(6):450-457. doi 10.2174/1566524017666171009105029
73. Xue Y., Kremer M., Muniz Moreno M.D.M., Chidiac C., Lorentz R., Birling M.C., Barrot M., Herault Y., Gaveriaux-Ruff C. The human SCN9AR185H point mutation induces pain hypersensitivity and spontaneous pain in mice. Front. Mol. Neurosci. 2022;15:913990. doi 10.3389/fnmol.2022.913990
74. Yamamori S., Sugaya D., Iida Y., Kokubo H., Itakura M., Suzuki E., Kataoka M., Miyaoka H., Takahashi M. Stress-induced phosphorylation of SNAP-25. Neurosci. Lett. 2014;561:182-187. doi 10.1016/j.neulet.2013.12.044
75. Zerbino D.R., Wilder S.P., Johnson N., Juettemann T., Flicek P.R. The ensemble regulatory build. Genome Biol. 2015;16(1):56. doi 10.1186/s13059-015-0621-5
76. Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A.H., Tanaseichuk O., Benner C., Chanda S.K. Metascape provides a biologistoriented resource for the analysis of systems-level datasets. Nat. Commun. 2019;10(1):1523. doi 10.1038/s41467-019-09234-6