Computer analysis shows differences between mitochondrial miRNAs and other miRNAs
https://doi.org/10.18699/vjgb-24-91
Abstract
A subclass of miRNAs with as yet unknown specific functions is mitomiRs – mitochondrial miRNAs that are mainly derived from nuclear DNA and are imported into mitochondria; moreover, changes in the expression levels of mitomiRs are associated with some diseases. To identify the most pronounced characteristics of mitochondrial miRNAs that distinguish them from other miRNAs, we classified mitomiR sequences using the Random Forest algorithm. The analysis revealed, for the first time, a significant difference between mitomiRs and other microRNAs by the following criteria (in descending order of importance in the classification): mitomiRs are evolutionarily older (have a lower phylostratigraphic age index, PAI); have more targets and disease associations, including mitochondrial ones (twosided Fisher’s exact test, average p-values 1.82×10–89/1.13×10–96 for all mRNA/diseases and 6.01×10–22/1.09×10–9 for mitochondria, respectively); and are in the class of “circulating” miRNAs (average pvalue 1.20×10–56). The identified differences between mitomiRs and other miRNAs may help uncover the mode of miRNA delivery into mitochondria, indicate the evolutionary conservation and importance of mitomiRs in the regulation of mitochondrial function and metabolism, and generally show that mitomiRs are not randomly encountered miRNAs. Information on 1,312 experimentally validated mitomiR sequences for three organisms (Homo sapiens, Mus musculus and Rattus norvegicus) is collected in the mitomiRdb database (https://mitomiRdb.org).
About the Authors
P. S. VorozheykinRussian Federation
Novosibirsk
I. I. Titov
Russian Federation
Novosibirsk
References
1. Agarwal V., Bell G.W., Nam J.-W., Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4: e05005. doi 10.7554/eLife.05005
2. Bandiera S., Rüberg S., Girard M., Cagnard N., Hanein S., Chrétien D., Munnich A., Lyonnet S., Henrion-Caude A. Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One. 2011;6(6):e20746. doi 10.1371/journal.pone.0020746
3. Barrey E., Saint-Auret G., Bonnamy B., Damas D., Boyer O., Gidrol X. Pre-microRNA and mature microRNA in human mitochondria. PLoS One. 2011;6(5):e20220. doi 10.1371/journal.pone.0020220
4. Bartel D.P. Metazoan microRNAs. Cell. 2018;173(1):20-51. doi 10.1016/j.cell.2018.03.006
5. Bian Z., Li L.-M., Tang R., Hou D.-X., Chen X., Zhang C.-Y., Zen K. Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res. 2010;20(9):1076-1078. doi 10.1038/cr.2010.119
6. Breiman L. Random forests. Mach. Learn. 2001;45(1):5-32. doi 10.1023/A:1010933404324
7. Chandradoss S.D., Schirle N.T., Szczepaniak M., MacRae I.J., Joo C. A dynamic search process underlies microRNA targeting. Cell. 2015;162(1):96-107. doi 10.1016/j.cell.2015.06.032
8. Chen J., Lin J., Hu Y., Ye M., Yao L., Wu L., Zhang W., Wang M., Deng T., Guo F., Huang Y., Zhu B., Wang D. RNADisease v4.0: an updated resource of RNA-associated diseases, providing RNAdisease analysis, enrichment and prediction. Nucleic Acids Res. 2022;51(D1):D1397-D1404. doi 10.1093/nar/gkac814
9. Das S., Ferlito M., Kent O.A., Fox-Talbot K., Wang R., Liu D., Raghavachari N., Yang Y., Wheelan S.J., Murphy E., Steenbergen C. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ. Res. 2012;110(12):1596-1603. doi 10.1161/CIRCRESAHA.112.267732
10. Dasgupta N., Peng Y., Tan Z., Ciraolo G., Wang D., Li R. miRNAs in mtDNA-less cell mitochondria. Cell Death Discov. 2015;1(1): 15004. doi 10.1038/cddiscovery.2015.4
11. Erturk E., Enes Onur O., Akgun O., Tuna G., Yildiz Y., Ari F. Mitochondrial miRNAs (mitomiRs): their potential roles in breast and other cancers. Mitochondrion. 2022;66:74-81. doi 10.1016/j.mito.2022.08.002
12. Fan S., Tian T., Chen W., Lv X., Lei X., Zhang H., Sun S., Cai L., Pan G., He L., Ou Z., Lin X., Wang X., Perez M.F., Tu Z., Ferrone S., Tannous B.A., Li J. Mitochondrial miRNA determines chemoresistance by reprogramming metabolism and regulating mitochondrial transcription. Cancer Res. 2019;79(6):1069-1084. doi 10.1158/0008-5472.CAN-18-2505
13. Gohel D., Singh R. Different platforms for mitomiRs in mitochondria: emerging facets in regulation of mitochondrial functions. Mitochondrion. 2022;66:67-73. doi 10.1016/j.mito.2022.08.003
14. Grimson A., Srivastava M., Fahey B., Woodcroft B.J., Chiang H.R., King N., Degnan B.M., Rokhsar D.S., Bartel D.P. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008;455(7217):1193-1197. doi 10.1038/nature07415
15. Grosswendt S., Filipchyk A., Manzano M., Klironomos F., Schilling M., Herzog M., Gottwein E., Rajewsky N. Unambiguous identification of miRNA: target site interactions by different types of ligation reactions. Mol. Cell. 2014;54(6):1042-1054. doi 10.1016/j.molcel.2014.03.049
16. Huang H.-Y., Lin Y.-C.-D., Li J., Huang K.-Y., Shrestha S., Hong H.-C., Tang Y., Chen Y.-G., Jin C.-N., Yu Y., Xu J.-T., Li Y.-M., Cai X.-X., Zhou Z.-Y., Chen X.-H., Pei Y.-Y., Hu L., Su J.-J., Cui S.-D., Wang F., Xie Y.-Y., Ding S.-Y., Luo M.-F., Chou C.-H., Chang N.-W., Chen K.-W., Cheng Y.-H., Wan X.-H., Hsu W.-L., Lee T.-Y., Wei F.-X., Huang H.-D. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020;48(D1):D148-D154. doi 10.1093/nar/gkz896
17. Jagannathan R., Thapa D., Nichols C.E., Shepherd D.L., Stricker J.C., Croston T.L., Baseler W.A., Lewis S.E., Martinez I., Hollander J.M. Translational regulation of the mitochondrial genome following redistribution of mitochondrial microRNA in the diabetic heart. Circ. Cardiovasc. Genet. 2015;8(6):785-802. doi 10.1161/CIRCGENETICS.115.001067
18. Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-D361. doi 10.1093/nar/gkw1092
19. Khorsandi S.E., Salehi S., Cortes M., Vilca-Melendez H., Menon K., Srinivasan P., Prachalias A., Jassem W., Heaton N. An in silico argument for mitochondrial microRNA as a determinant of primary non function in liver transplantation. Sci. Rep. 2018;8(1):3105. doi 10.1038/s41598-018-21091-9
20. Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1): D155-D162. doi 10.1093/nar/gky1141
21. Kren B.T., Wong P.Y.-P., Sarver A., Zhang X., Zeng Y., Steer C.J. MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol. 2009;6(1):65-72. doi 10.4161/rna.6.1.7534
22. Li P., Jiao J., Gao G., Prabhakar B.S. Control of mitochondrial activity by miRNAs. J. Cell. Biochem. 2012;113(4):1104-1110. doi 10.1002/jcb.24004
23. Lin H.-Y., Chu P.-Y. Advances in understanding mitochondrial microRNAs (mitomiRs) on the pathogenesis of triple-negative breast cancer (TNBC). Oxid. Med. Cell. Longev. 2021;2021:5517777. doi 10.1155/2021/5517777
24. Lung B., Zemann A., Madej M.J., Schuelke M., Techritz S., Ruf S., Bock R., Hüttenhofer A. Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res. 2006; 34(14):3842-3852. doi 10.1093/nar/gkl448
25. Mercer T.R., Neph S., Dinger M.E., Crawford J., Smith M.A., Shearwood A.-M.J., Haugen E., Bracken C.P., Rackham O., Stamatoyannopoulos J.A., Filipovska A., Mattick J.S. The human mitochondrial transcriptome. Cell. 2011;146(4):645-658. doi 10.1016/j.cell.2011.06.051
26. Mustafin Z.S., Zamyatin V.I., Konstantinov D.K., Doroshkov A.V., Lashin S.A., Afonnikov D.A. Phylostratigraphic analysis shows the earliest origination of the abiotic stress associated genes in A. thaliana. Genes. 2019;10(12):963. doi 10.3390/genes10120963
27. Pozniak T., Shcharbin D., Bryszewska M. Circulating microRNAs in medicine. Int. J. Mol. Sci. 2022;23(7):3996. doi 10.3390/ijms23073996
28. Russo F., Di Bella S., Vannini F., Berti G., Scoyni F., Cook H.V., Santos A., Nigita G., Bonnici V., Laganà A., Geraci F., Pulvirenti A., Giugno R., De Masi F., Belling K., Jensen L.J., Brunak S., Pellegrini M., Ferro A. miRandola 2017: a curated knowledge base of noninvasive biomarkers. Nucleic Acids Res. 2018;46(D1):D354-D359. doi 10.1093/nar/gkx854
29. Salim U., Kumar A., Kulshreshtha R., Vivekanandan P. Biogenesis, characterization, and functions of mirtrons. WIREs RNA. 2022; 13(1):e1680. doi 10.1002/wrna.1680
30. Salomon W.E., Jolly S.M., Moore M.J., Zamore P.D., Serebrov V. Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell. 2015;162(1):84-95. doi 10.1016/j.cell.2015.06.029
31. Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C., Connor R., Funk K., Kelly C., Kim S., Madej T., Marchler-Bauer A., Lanczycki C., Lathrop S., Lu Z., Thibaud-Nissen F., Murphy T., Phan L., Skripchenko Y., Tse T., Wang J., Williams R., Trawick B.W., Pruitt K.D., Sherry S.T. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50(D1):D20-D26. doi 10.1093/nar/gkab1112
32. Schriml L.M., Munro J.B., Schor M., Olley D., McCracken C., Felix V., Baron J.A., Jackson R., Bello S.M., Bearer C., Lichenstein R., Bisordi K., Dialo N.C., Giglio M., Greene C. The Human Disease Ontology 2022 update. Nucleic Acids Res. 2022;50(D1):D1255-D1261. doi 10.1093/nar/gkab1063
33. Sherry S.T. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-311. doi 10.1093/nar/29.1.308
34. Sripada L., Tomar D., Prajapati P., Singh Rochika, Singh A.K., Singh Rajesh. Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA. PLoS One. 2012;7(9):e44873. doi 10.1371/journal.pone.0044873
35. Tastsoglou S., Miliotis M., Kavakiotis I., Alexiou A., Gkotsi E.C., Lambropoulou A., Lygnos V., Kotsira V., Maroulis V., Zisis D., Skoufos G., Hatzigeorgiou A.G. PlasmiR: a manual collection of circulating microRNAs of prognostic and diagnostic value. Cancers. 2021; 13(15):3680. doi 10.3390/cancers13153680
36. Tomasetti M., Santarelli L., Neuzil J., Dong L. MicroRNA regulation of cancer metabolism: role in tumour suppression. Mitochondrion. 2014;19:29-38. doi 10.1016/j.mito.2014.06.004
37. Wang W.-X., Visavadiya N.P., Pandya J.D., Nelson P.T., Sullivan P.G., Springer J.E. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp. Neurol. 2015;265:84-93. doi 10.1016/j.expneurol.2014.12.018
38. Wang X., Song C., Zhou X., Han X., Li J., Wang Z., Shang H., Liu Y., Cao H. Mitochondria associated microRNA expression profiling of heart failure. BioMed Res. Int. 2017;2017:4042509. doi 10.1155/2017/4042509
39. Zhang X., Zuo X., Yang B., Li Z., Xue Y., Zhou Y., Huang J., Zhao X., Zhou J., Yan Y., Zhang H., Guo P., Sun H., Guo L., Zhang Y., Fu X.-D. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell. 2014;158(3):607-619. doi 10.1016/j.cell.2014.05.047
40. Zheng H., Liu J., Yu J., McAlinden A. Expression profiling of mitochondria- associated microRNAs during osteogenic differentiation of human MSCs. Bone. 2021;151:116058. doi 10.1016/j.bone.2021.116058
41. Ziętara K.J., Lejman J., Wojciechowska K., Lejman M. The importance of selected dysregulated microRNAs in diagnosis and prognosis of childhood B-cell precursor acute lymphoblastic leukemia. Cancers. 2023;15(2):428. doi 10.3390/cancers15020428