A novel approach to analyzing the evolution of SARS-CoV-2 based on visualization and clustering of large genetic data compactly represented in operative memory
https://doi.org/10.18699/vjgb-24-92
Abstract
SARS-CoV-2 is a virus for which an outstanding number of genome variants were collected, sequenced and stored from sources all around the world. Raw data in FASTA format include 16.8 million genomes, each ≈29,900 nt (nucleotides), with a total size of ≈500 ∙ 109 nt, or 465 Gb. We suggest an approach to data representation and organization, with which all this can be stored losslessly in the operative memory (RAM) of a common PC. Moreover, just ≈330 Mb will be enough. Aligning all genomes versus the initial Wuhan-Hu-1 reference sequence allows each to be represented as a data structure containing lists of point mutations, deletions and insertions. Our implementation of such data representation resulted in a 1:1500 compression ratio (for comparison, compression of the same data with the popular WinRAR archiver gives only 1:62) and fast access to genomes (and their metadata) and comparisons between different genome variants. With this approach implemented as a C++ program, we performed an analysis of various properties of the set of SARS-CoV-2 genomes available in NCBI Genbank (within a period from 24.12.2019 to 24.06.2024). We calculated the distribution of the number of genomes with undetermined nucleotides, ‘N’s, vs the number of such nucleotides in them, the number of unique genomes and clusters of identical genomes, and the distribution of clusters by size (the number of identical genomes) and duration (the time interval between each cluster’s first and last genome). Finally, the evolution of distributions of the number of changes (editing distance between each genome and reference sequence) caused by substitutions, deletions and insertions was visualized as 3D surfaces, which clearly show the process of viral evolution over 4.5 years, with a time step = 1 week. It is in good correspondence with phylogenetic trees (usually based on 3–4 thousand of genome variant representatives), but is built over millions of genomes, shows more details and is independent of the type of lineage/clade classification.
Keywords
About the Authors
A. Yu. PalyanovRussian Federation
Novosibirsk
N. V. Palyanova
Russian Federation
Novosibirsk
References
1. Aksamentov I., Roemer C., Hodcroft B., Neher R.A. Nextclade: clade assignment, mutation calling and quality control for viral genomes. J. Open Source Software. 2021;6(67):3773. doi 10.21105/joss.03773
2. Amicone M., Borges V., Alves M.J., Isidro J., Zé-Zé L., Duarte S., Vieira L., Guiomar R., Gomes J.P., Gordo I. Mutation rate of SARSCoV-2 and emergence of mutators during experimental evolution. Evol. Med. Public Health. 2022;10(1):142-155. doi 10.1093/emph/eoac010
3. Bai C., Zhong Q., Gao G.F. Overview of SARS-CoV-2 genome-encoded proteins. Sci. China Life Sci. 2022;65(2):280-294. doi 10.1007/s11427-021-1964-4
4. Bolze A., Basler T., White S., Rossi A.D., Wyman D., Dai H., Roychoudhury P., Greninger A.L., Hayashibara K., Beatty M., Shah S., Stous S., McCrone J.T., Kil E., Cassens T., Tsan K., Nguyen J., Ramirez J., Carter S., Cirulli E.T., Barrett K.S., Washington N.L., Belda-Ferre P., Jacobs S., Sandoval E., Becker D., Lu J.T., Isaksson M., Lee W., Luo S. Evidence for SARS-CoV-2 Delta and Omicron co-infections and recombination. Med. 2022;3(12):848-859. doi 10.1016/j.medj.2022.10.002
5. Campagnola G., Govindarajan V., Pelletier A., Canard B., Peersen O.B. The SARS-CoV-2 nsp12 polymerase active site is tuned for largegenome replication. J. Virol. 2022;96(16):e0067122. doi 10.1128/jvi.00671-22
6. Cui X., Wang Y., Zhai J., Xue M., Zheng C., Yu L. Future trajectory of SARS-CoV-2: Constant spillover back and forth between humans and animals. Virus Res. 2023;328:199075. doi 10.1016/j.virusres.2023.199075
7. Palyanov A.Yu., Palyanova N.V. On the space of SARS-CoV-2 genetic sequence variants. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(7):839-850. doi 10.18699/VJGB-23-97
8. Palyanova N.V., Sobolev I.A., Alekseev A., Glushenko A., Kazachkova E., Markhaev A., Kononova Y., Gulyaeva M., Adamenko L., Kurskaya O., Bi Y., Xin Y., Sharshov K., Shestopalov A. Genomic and epidemiological features of COVID-19 in the Novosibirsk region during the beginning of the pandemic. Viruses. 2022;14(9):2036. doi 10.3390/v14092036
9. Palyanova N.V., Sobolev I.A., Palyanov A.Yu., Kurskaya O.G., Komissarov A.B., Danilenko D.M., Fadeev A.V., Shestopalov A.M. The development of the SARS-CoV-2 epidemic in different regions of Siberia in the 2020–2022 period. Viruses. 2023;15(10):2014. doi 10.3390/v15102014
10. Sanjuán R., Domingo-Calap P. Mechanisms of viral mutation. Cell. Mol. Life Sci. 2016;73(23):4433-4448. doi 10.1007/s00018-016-2299-6
11. Simon-Loriere E., Holmes E.C. Why do RNA viruses recombine? Nat. Rev. Microbiol. 2011;9(8):617-626. doi 10.1038/nrmicro2614
12. Sonnleitner S.T., Prelog M., Sonnleitner S., Hinterbichler E., Halbfurter H., Kopecky D.B.C., Almanzar G., Koblmüller S., Sturmbauer C., Feist L., Horres R., Posch W., Walde G. Cumulative SARS-CoV-2 mutations and corresponding changes in immunity in an immunocompromised patient indicate viral evolution within the host. Nat. Commun. 2022;13(1):2560. doi 10.1038/s41467-022-30163-4
13. Temmam S., Vongphayloth K., Baquero E., Munier S., Bonomi M., Regnault B., Douangboubpha B., Karami Y., Chrétien D., Sanamxay D., Xayaphet V., Paphaphanh P., Lacoste V., Somlor S., Lakeomany K., Phommavanh N., Pérot P., Dehan O., Amara F., Donati F., Bigot T., Nilges M., Rey F.A., van der Werf S., Brey P.T., Eloit M. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature. 2022;604(7905):330-336. doi 10.1038/s41586-022-04532-4
14. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.-G., Hu Y., Tao Z.-W., Tian J.-H., Pei Y.-Y., Yuan M.-L., Zhang Y.-L., Dai F.-H., Liu Y., Wang Q.-M., Zheng J.-J., Xu L., Holmes E.C., Zhang Y.-Z. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-269. doi 10.1038/s41586-020-2008-3
15. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., Chen H.-D., Chen J., Luo Y., Guo H., Jiang R.-D., Liu M.-Q., Chen Y., Shen X.-R., Wang X., Zheng X.-S., Zhao K., Chen Q.-J., Deng F., Liu L.-L., Shi Z.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi 10.1038/s41586-020-2012-7