Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Search for and functional annotation of multi-domain PLA2 family proteins in flatworms

https://doi.org/10.18699/vjgb-24-93

Abstract

The phospholipase A2 (PLA2) is a superfamily of hydrolases that catalyze the hydrolysis of phospholipids and play a key role in many molecular processes in the cells and the organism as a whole. This family consists of 16 groups divided into six main types. PLA2 were first isolated from venom toxins and porcine pancreatic juice. The study of these enzymes is currently of great interest, since it has been shown that a number of PLA2 are involved in the processes of carcinogenesis. PLA2 enzymes were characterized in detail in model organisms and humans. However, their presence and functional role in non-model organisms is poorly understood. Such poorly studied taxa include flatworms, a number of species of which are human parasites. Several PLA2 genes have previously been characterized in parasitic flatworms and their possible role in parasite-host interaction has been shown. However, no systematic identification of the PLA2 genes in this taxon has been carried out. The paper provides a search for and a comparative analysis of PLA2 sequences encoded in the genomes of flatworms. 44 species represented by two free-living and 42 parasitic organisms were studied. The analysis was based on identification of orthologous groups of protein-coding genes, taking into account the domain structure of proteins. In flatworms, 12 of the 13 known types of animal A2 phospholipases were found, represented by 11 orthologous groups. Some phospholipases of several types fell into one orthologous group, some types split into several orthogroups in accordance with their domain structure. It has been shown that phospholipases A2 of the calcium-independent type, platelet-activating phospho­lipases from group G8 and lysosomal phospholipases from group G15 are represented in all large taxa of flatworms and the vast majority of the species studied by us. In free-living flatworms PLA2 genes have multiple copies. In parasitic flatworms, on the contrary, loss of genes occur specifically in individual taxa specifically for groups or sub­families of PLAs. An orthologous group of secreted phospholipases has been identified, which is represented only in Digenea and this family has undergone duplications in the genomes of opisthorchids. Interestingly, a number of experimental studies have previously shown the effect of Clonorchis sinensis proteins of this orthogroup on the cancer transformation of host cells. Our results made it possible for the first time to systematically identify PLA2 sequences in flatworms, and demonstrated that their evolution is subject to gene loss processes characteristic of parasite genomes in general. In addition, our analysis allowed us to identify taxon-specific processes of duplication and loss of PLA2 genes in parasitic organisms, which may be associated with the processes of their interaction with the host organism.

About the Authors

M. E. Bocharnikova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University; Kurchatov Genomic Center of ICG SB RAS
Russian Federation

Novosibirsk



I. I. Turnaev
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Kurchatov Genomic Center of ICG SB RAS
Russian Federation

Novosibirsk



D. A. Afonnikov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University; Kurchatov Genomic Center of ICG SB RAS
Russian Federation

Novosibirsk



References

1. Bitar L., Jundi D., Rima M., Al Alam J., Sabatier J.M., Fajloun Z. Bee venom PLA2 versus snake venom PLA2: Evaluation of structural and functional properties. Venoms Toxins. 2021;2(1):22-33. doi 10.2174/2666121701999210101225032

2. Brusa F., Leal-Zanchet A.M., Noreña C., Damborenea C. Phylum Platyhelminthes. In: Thorp and Covich’s Freshwater Invertebrates. Ch. 5. Academic Press, 2020;101-120. doi 10.1016/B978-0-12-804225-0.00005-8

3. Carbonell C., Rodríguez-Alonso B., López-Bernús A., Almeida H., Galindo-Pérez I., Velasco-Tirado V., Belhassen-García M. Clinical spectrum of schistosomiasis: an update. J. Clin. Med. 2021;10(23): 5521. doi 10.3390/jcm10235521

4. Caurcel C., Laetsch D.R., Challis R., Kumar S., Gharbi K., Blaxter M. MolluscDB: a genome and transcriptome database for molluscs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021;376(1825):20200157. doi 10.1098/rstb.2020.0157

5. Dennis E.A., Cao J., Hsu Y.-H., Magrioti V., Kokotos G. PhospholipaseA2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 2011;111(10):6130-6185. doi 10.1021/cr200085w

6. Eddy S.R. Accelerated profile HMM searches. PLoS Comput. Biol. 2011;7(10):e1002195. doi 10.1371/journal.pcbi.1002195

7. Egger B., Lapraz F., Tomiczek B., Müller S., Dessimoz C., Girstmair J., Telford M.J. A transcriptomic-phylogenomic analysis of the evolutionary relationships of flatworms. Curr. Biol. 2015;25(10):1347-1353. doi 10.1016/j.cub.2015.03.034

8. Emms D.M., Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. doi 10.1186/s13059-019-1832-y

9. Filkin S.Yu., Lipkin A.V., Fedorov A.N. Phospholipase superfamily: structure, functions, and biotechnological applications. Uspekhi Biologicheskoi Khimii = Biochemistry (Moscow). 2020;85(Suppl.1): S177S195. DOI 10.1134/S0006297920140096

10. Gutiérrez J.M., Lomonte B. Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon. 2013; 62:27-39. doi 10.1016/j.toxicon.2012.09.006

11. Howe K.L., Bolt B.J., Shafie M., Kersey P., Berriman M. WormBase ParaSite − a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 2017;215:2-10. doi 10.1016/j.molbiopara.2016.11.005

12. Hu F., Hu X., Ma C., Zhao J., Xu J., Yu X. Molecular characterization of a novel Clonorchis sinensis secretory phospholipase A2 and investigation of its potential contribution to hepatic fibrosis. Mol. Biochem. Parasitol. 2009;167(2):127-134. doi 10.1016/j.molbiopara.2009.05.003

13. Huang Q., Wu Y., Qin C., He W., Wei X. Phylogenetic and structural analysis of the phospholipase A2 gene family in vertebrates. Int. J. Mol. Med. 2015;35(3):587-596. doi 10.3892/ijmm.2014.2047

14. Langleib M., Calvelo J., Costábile A., Castillo E., Tort J.F., Hoffmann F.G., Iriarte A. Evolutionary analysis of species-specific duplications in flatworm genomes. Mol. Phylogenet. Evol. 2024;199: 108141. doi 10.1016/j.ympev.2024.108141

15. Laumer C.E., Hejnol A., Giribet G. Nuclear genomic signals of the ‘microturbellarian’ roots of platyhelminth evolutionary innovation. eLife. 2015;4:e05503. doi 10.7554/eLife.05503

16. Letunic I., Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024;52(W1):W78-W82. doi 10.1093/nar/gkae268

17. McIntosh J.M., Ghomashchi F., Gelb M.H., Dooley D.J., Stoehr S.J., Giordani A.B., Olivera B.M. Conodipine-M, a novel phospholipase A2 isolated from the venom of the marine snail Conus magus. J. Biol. Chem. 1995;270(8):3518-3526. doi 10.1074/jbc.270.8.3518

18. Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G.A., Sonnhammer E.L., Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49(D1):D412-D419. doi 10.1093/nar/gkaa913

19. Mordvinov V.A., Minkova G.A., Kovner A.V., Ponomarev D.V., Lvova M.N., Zaparina O., Pakharukova M.Y. A tumorigenic cell line derived from a hamster cholangiocarcinoma associated with Opisthorchis felineus liver fluke infection. Life Sci. 2021;277:119494. doi 10.1016/j.lfs.2021.119494

20. Mouchlis V.D., Dennis E.A. Membrane association allosterically regulates phospholipase A2 enzymes and their specificity. Acc. Chem. Res. 2022;55(23):3303-3311. doi 10.1021/acs.accounts.2c00497

21. Murakami M., Sato H., Taketomi Y. Updating phospholipase A2 biology. Biomolecules. 2020;10(10):1457. doi 10.3390/biom10101457

22. Murase R., Taketomi Y., Miki Y., Nishito Y., Saito M., Fukami K., Murakami M. Group III phospholipase A2 promotes colitis and colorectal cancer. Sci. Rep. 2017;7(1):12261. doi 10.1038/s41598-017-12434-z

23. Nevalainen T.J., Cardoso J.C., Riikonen P.T. Conserved domains and evolution of secreted phospholipases A2. FEBS J. 2012;279(4): 636-649. doi 10.1111/j.1742-4658.2011.08453.x

24. Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximumlikelihood phylogenies. Mol. Biol. Evol. 2015;32(1):268-274. doi 10.1093/molbev/msu300

25. Ogorodova L.M., Fedorova O.S., Sripa B., Mordvinov V.A., Katokhin A.V., Keiser J.; TOPIC Consortium. Opisthorchiasis: an overlooked danger. PLoS Negl. Trop. Dis. 2015:9(4):e0003563. doi 10.1371/journal.pntd.0003563

26. Pakharukova M.Y., Zaparina O.G., Kapushchak Y.K., Baginskaya N.V., Mordvinov V.A. Opisthorchis felineus infection provokes time-dependent accumulation of oxidative hepatobiliary lesions in the injured hamster liver. PLoS One. 2019a;14(5):e0216757. doi 10.1371/journal.pone.0216757

27. Pakharukova M.Y., da Costa J.M.C., Mordvinov V.A. The liver fluke Opisthorchis felineus as a group III or group I carcinogen. 4open. 2019b;2:23. doi 10.1051/fopen/2019016

28. Park J.B., Lee C.S., Jang J.H., Ghim J., Kim Y.J., You S., Ryu S.H. Phospholipase signalling networks in cancer. Nat. Rev. Cancer. 2012;12(11):782-792. doi 10.1038/nrc3379

29. Salabi F., Jafari H. Whole transcriptome sequencing reveals the activity of the PLA2 family members in Androctonus crassicauda (Scorpionida: Buthidae) venom gland. FASEB J. 2024;38(10):e23658. doi 10.1096/fj.202400178RR

30. Scott K.F., Sajinovic M., Hein J., Nixdorf S., Galettis P., Liauw W., Russell P.J. Emerging roles for phospholipase A2 enzymes in cancer. Biochimie. 2010;92(6):601-610. doi 10.1016/j.biochi.2010.03.019

31. Shang M., Xie Z., Tang Z., He L., Wang X., Wang C., Li X. Expression of Clonorchis sinensis GIIIsPLA2 protein in baculovirus-infected insect cells and its overexpression facilitating epithelial-mesenchymal transition in Huh7 cells via AKT pathway. Parasitol. Res. 2017; 116:1307-1316. doi 10.1007/s00436-017-5409-y

32. Teixeira S.C., da Silva M.S., Gomes A.A.S., Moretti N.S., Lopes D.S., Ferro E.A.V., de Melo Rodrigues V. Panacea within a Pandora’s box: the antiparasitic effects of phospholipases A2 (PLA2s) from snake venoms. Trends Parasitol. 2022;38(1):80-94. doi 10.1016/j.pt.2021.07.004

33. Trouvé S., Sasal P., Jourdane J., Renau F., Morand S. The evolution of life-history traits in parasitic and free-living platyhelminthes: a new perspective. Oecologia. 1998;115:370-378. doi 10.1007/s004420050530

34. Turnaev I.I., Bocharnikova M.E., Afonnikov D.A. Human phospholipases A2: a functional and evolutionary analysis. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(8):787-797. doi 10.18699/VJGB-22-95

35. Wang X., Hu F., Hu X., Chen W., Huang Y., Yu X. Proteomic identification of potential Clonorchis sinensis excretory/secretory products capable of binding and activating human hepatic stellate cells. Parasitol. Res. 2014;113:3063-3071. doi 10.1007/s00436-014-3972-z

36. Wu Y.J., He Q., Shang M., Yin Y.X., Li Y., Du X., Li X.R. The NF-κB signalling pathway and TM7SF3 contribute to liver fibrosis caused by secreted phospholipase A2 of Clonorchis sinensis. Parasit. Vectors. 2021;14:1-9. doi 10.1186/s13071-021-04663-z


Review

Views: 255


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)