Reconstruction and computer analysis of the structural and functional organization of the gene network regulating cholesterol biosynthesis in humans and the evolutionary characteristics of the genes involved in the network
https://doi.org/10.18699/vjgb-24-94
Abstract
Cholesterol is an essential structural component of cell membranes and a precursor of vitamin D, as well as steroid hormones. Humans and other animal species can absorb cholesterol from food. Cholesterol is also synthesized de novo in the cells of many tissues. We have previously reconstructed the gene network regulating intracellular cholesterol levels, which included regulatory circuits involving transcription factors from the SREBP (Sterol Regulatory Element-Binding Proteins) subfamily. The activity of SREBP transcription factors is regulated inversely depending on the intracellular cholesterol level. This mechanism is implemented with the participation of proteins SCAP, INSIG1, INSIG2, MBTPS1/S1P and MBTPS2/S2P. This group of proteins, together with the SREBP factors, is designated as “cholesterol sensor”. An elevated cholesterol level is a risk factor for the development of cardiovascular diseases and may also be observed in obesity, diabetes and other pathological conditions. Systematization of information about the molecular mechanisms controlling the activity of SREBP factors and cholesterol biosynthesis in the form of a gene network and building new knowledge about the gene network as a single object is extremely important for understanding the molecular mechanisms underlying the predisposition to diseases. With a computer tool, ANDSystem, we have built a gene network regulating cholesterol biosynthesis. The gene network included data on: (1) the complete set of enzymes involved in cholesterol biosynthesis; (2) proteins that function as part of the “cholesterol sensor”; (3) proteins that regulate the activity of the “cholesterol sensor”; (4) genes encoding proteins of these groups; (5) genes whose transcription is regulated by SREBP factors (SREBP target genes). The gene network was analyzed and feedback loops that control the activity of SREBP factors were identified. These feedback loops involved the PPARG, NR0B2/SHP1, LPIN1, and AR genes and the proteins they encode. Analysis of the phylostratigraphic age of the genes showed that the ancestral forms of most human genes encoding the enzymes of cholesterol biosynthesis and the proteins of the “cholesterol sensor” may have arisen at early evolutionary stages (Cellular organisms (the root of the phylostratigraphic tree) and the stages of Eukaryota and Metazoa divergence). However, the mechanism of gene transcription regulation in response to changes in cholesterol levels may only have formed at later evolutionary stages, since the phylostratigraphic age of the genes encoding the transcription factors SREBP1 and SREBP2 corresponds to the stage of Vertebrata divergence.
Keywords
About the Authors
A. D. MikhailovaRussian Federation
Novosibirsk
S. A. Lashin
Russian Federation
Novosibirsk
V. A. Ivanisenko
Russian Federation
Novosibirsk
P. S. Demenkov
Russian Federation
Novosibirsk
E. V. Ignatieva
Russian Federation
Novosibirsk
References
1. Agrawal A., Balci H., Hanspers K., Coort S.L., Martens M., Slenter D.N., Ehrhart F., Digles D., Waagmeester A., Wassink I., Abbassi-Daloii T., Lopes E.N., Iyer A., Acosta J.M., Willighagen L.G., Nishida K., Riutta A., Basaric H., Evelo C.T., Willighagen E.L., Kutmon M., Pico A.R. WikiPathways 2024: next generation pathway database. Nucleic Acids Res. 2024;52(D1):D679-D689. doi 10.1093/nar/gkad960
2. Arito M., Horiba T., Hachimura S., Inoue J., Sato R. Growth factor-induced phosphorylation of sterol regulatory element-binding proteins inhibits sumoylation, thereby stimulating the expression of their target genes, low density lipoprotein uptake, and lipid synthesis. J. Biol. Chem. 2008;283(22):15224-15231. doi 10.1074/jbc.M800910200
3. Choy H.L., Gaylord E.A., Doering T.L. Ergosterol distribution controls surface structure formation and fungal pathogenicity. mBio. 2023; 14(4):e0135323. doi 10.1128/mbio.01353-23
4. DeBose-Boyd R.A., Ye J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem. Sci. 2018;43(5):358-368. doi 10.1016/j.tibs.2018.01.005
5. Desmond E., Gribaldo S. Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol. Evol. 2009;10(1):364-381. doi 10.1093/gbe/evp036
6. Fajas L., Schoonjans K., Gelman L., Kim J.B., Najib J., Martin G., Fruchart J.C., Briggs M., Spiegelman B.M., Auwerx J. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte
7. differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol. Cell. Biol. 1999;19(8):5495-503. doi 10.1128/MCB.19.8.5495
8. Ferrer A., Altabella T., Arró M., Boronat A. Emerging roles for conjugated sterols in plants. Prog. Lipid Res. 2017;67:27-37. doi 10.1016/j.plipres.2017.06.002
9. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318-1330. doi 10.1126/science.aaz1776
10. Guo D., Wang Y., Wang J., Song L., Wang Z., Mao B., Tan N. RA-XII suppresses the development and growth of liver cancer by inhibition of lipogenesis via SCAP-dependent SREBP supression. Molecules. 2019;24(9):1829. doi 10.3390/molecules24091829
11. Han H., Cho J.W., Lee S., Yun A., Kim H., Bae D., Yang S., Kim C.Y., Lee M., Kim E., Lee S., Kang B., Jeong D., Kim Y., Jeon H.N., Jung H., Nam S., Chung M., Kim J.H., Lee I. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46(D1):D380-D386. doi 10.1093/nar/gkx1013
12. Heemers H., Verrijdt G., Organe S., Claessens F., Heyns W., Verhoeven G., Swinnen J.V. Identification of an androgen response element in intron 8 of the sterol regulatory element-binding protein cleavage-activating protein gene allowing direct regulation by the androgen receptor. J. Biol. Chem. 2004;279(29):30880-30887. doi 10.1074/jbc.M401615200
13. Huang W.C., Zhau H.E., Chung L.W.K. Androgen receptor survival signaling is blocked by anti-β2-microglobulin monoclonal antibody via a MAPK/lipogenic pathway in human prostate cancer cells. J. Biol. Chem. 2010;285(11):7947-7956. doi 10.1074/jbc.M109.092759
14. Ishimoto K., Nakamura H., Tachibana K., Yamasaki D., Ota A., Hirano K.I., Tanaka T., Hamakubo T., Sakai J., Kodama T., Doi T. Sterolmediated regulation of human lipin 1 gene expression in hepatoblastoma cells. J. Biol. Chem. 2009;284(33):22195-22205. doi 10.1074/jbc.M109.028753
15. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019; 20(Suppl. 1):34. doi 10.1186/s12859-018-2567-6
16. Jeon T.I., Osborne T.F. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol. Metab. 2012:23(2):65-72. doi 10.1016/j.tem.2011.10.004
17. Jiang T., Zhang G., Lou Z. Role of the sterol regulatory element binding protein pathway in tumorigenesis. Front. Oncol. 2020;10:1788. doi 10.3389/fonc.2020.01788
18. Kast-Woelbern H.R., Dana S.L., Cesario R.M., Sun L., de Grandpre L.Y., Brooks M.E., Osburn D.L., Reifel-Miller A., Klausing K., Leibowitz M.D. Rosiglitazone induction of Insig-1 in white adipose tissue reveals a novel interplay of peroxisome proliferator-activated receptor gamma and sterol regulatory element-binding protein in the regulation of adipogenesis. J. Biol. Chem. 2004;279(23):23908-23915. doi 10.1074/jbc.M403145200
19. Kim H.J., Kim J.Y., Kim J.Y., Park S.K., Seo J.H., Kim J.B., Lee I.K., Kim K.S., Choi H.S. Differential regulation of human and mouse orphan nuclear receptor small heterodimer partner promoter by sterol regulatory element binding protein-1. J. Biol. Chem. 2004;279(27): 28122-228131. doi 10.1074/jbc.M313302200
20. Kim H., Hiraishi A., Tsuchiya K., Sakamoto K. (-) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology. 2010; 62(3):245-255. doi 10.1007/s10616-010-9285-x
21. Kolchanov N.A., Ignatieva E.V., Ananko E.A., Podkolodnaya O.A., Stepanenko I.L., Merkulova T.I., Pozdnyakov M.A., Podkolodny N.L., Naumochkin A.N., Romashchenko A.G. Transcription Regulatory Regions Database (TRRD): its status in 2002. Nucleic Acids Res. 2002;30(1):312-317. doi 10.1093/nar/30.1.312
22. Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Yu.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):833-850 (in Russian)
23. Koolman J., Roehm K.H. (Eds). Color Atlas of Biochemistry. Stuttgart; New York: Thieme, 2005
24. Li N., Li X., Ding Y., Liu X., Diggle K., Kisseleva T., Brenner D.A. SREBP regulation of lipid metabolism in liver disease, and therapeutic strategies. Biomedicines. 2023;11(12):3280. doi 10.3390/biomedicines11123280
25. Luo J., Yang H., Song B.L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020;21(4):225-245. doi 10.1038/s41580-019-0190-7
26. Macvanin M.T., Gluvic Z.M., Klisic A.N., Manojlovic M.S., Suri J.S., Rizzo M., Isenovic E.R. The link between miRNAs and PCKS9 in atherosclerosis. Curr. Med. Chem. 2024;31(42):6926-6956. doi 10.2174/0109298673262124231102042914
27. Mateus T., Martins F., Nunes A., Herdeiro M.T., Rebelo S. Metabolic alterations in myotonic dystrophy type 1 and their correlation with lipin. Int. J. Environ. Res. Public. Health. 2021;18(4):1794. doi 10.3390/ijerph18041794
28. Merkulova T.I., Ananko E.A., Ignatieva E.V., Kolchanov N.A. Transcription regulatory codes of eukaryotic genomes. Russ. J. Genet. 2013;49(1):29-45. doi 10.1134/S1022795413010079
29. Mustafin Z.S., Lashin S.A., Matushkin Y.G., Gunbin K.V., Afonnikov D.A. Orthoscape: a cytoscape application for grouping and visualization KEGG based gene networks by taxonomy and homology principles. BMC Bioinformatics. 2017;18(Suppl. 1):1427. doi 10.1186/s12859-016-1427-5
30. Mustafin Z.S., Lashin S.A., Matushkin Yu.G. Phylostratigraphic analysis of gene networks of human diseases. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(1):46-56. doi 10.18699/VJ21.006
31. Nes W.D. Biosynthesis of cholesterol and other sterols. Chem. Rev. 2011;111(10):6423-6451. doi 10.1021/cr200021m
32. Paul B., Lewinska M., Andersen J.B. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep. 2022;4(6):100479. doi 10.1016/j.jhepr.2022.100479
33. Peregrín-Alvarez J.M., Sanford C., Parkinson J. The conservation and evolutionary modularity of metabolism. Genome Biol. 2009;10: R63. doi 10.1186/gb-2009-10-6-r63
34. Peterson T.R., Sengupta S.S., Harris T.E., Carmack A.E., Kang S.A., Balderas E., Guertin D.A., Madden K.L., Carpenter A.E., Finck B.N., Sabatini D.M. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146(3):408-420. doi 10.1016/j.cell.2011.06.034
35. Roth A., Looser R., Kaufmann M., Blättler S.M., Rencurel F., HuangW., Moore D.D., Meyer U.A. Regulatory cross-talk between drug metabolism and lipid homeostasis: constitutive androstane receptor and pregnane X receptor increase Insig-1 expression. Mol. Pharmacol. 2008;73(4):1282-1289. doi 10.1124/mol.107.041012
36. Sato R., Inoue J., Kawabe Y., Kodama T., Takano T., Maeda M. Steroldependent transcriptional regulation of sterol regulatory elementbinding protein-2. J. Biol. Chem. 1996;271(43):26461-26464. doi 10.1074/jbc.271.43.26461
37. Schade D.S., Shey L., Eaton R.P. Cholesterol review: a metabolically important molecule. Endocr. Pract. 2020;26(12):1514-1523. doi 10.4158/EP-2020-0347
38. Shimano H., Sato R. SREBP-regulated lipid metabolism: convergent physiology – divergent pathophysiology. Nat. Rev. Endocrinol. 2017;13(12):710-730. doi 10.1038/nrendo.2017.91
39. Simoneit B.R. Molecular indicators (biomarkers) of past life. Anat. Rec. 2002;268(3):186-195. doi 10.1002/ar.10153
40. Snyder G.K., Sheafor B. Red blood cells: Centerpiece in the evolution of the vertebrate circulatory system. Integr. Comp. Biol. 1999; 39(2):189-198. doi 10.1093/icb/39.2.189
41. Stephenson A., Adams J.W., Vaccarezza M. The vertebrate heart: an evolutionary perspective. J. Anat. 2017;231(6):787-797. doi 10.1111/joa.12687
42. Sundqvist A., Bengoechea-Alonso M.T., Ye X., Lukiyanchuk V., Jin J., Harper J.W., Ericsson J. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab. 2005;1(6):379-391. doi 10.1016/j.cmet.2005.04.010
43. Svoboda O., Bartunek P. Origins of the vertebrate erythro/megakaryocytic system. Biomed. Res. Int. 2015;2015:632171. doi 10.1155/2015/632171
44. Vargas-Alarcon G., Gonzalez-Pacheco H., Perez-Mendez O., Posadas-Sanchez R., Cardoso-Saldaña G., Ramirez-Bello J., Escobedo G., Nieto-Lima B., Fragoso J.M. SREBF1c and SREBF2 gene polymorphisms are associated with acute coronary syndrome and blood lipid levels in Mexican population. PLoS One. 2019;14(9): e0222017. doi 10.1371/journal.pone.0222017
45. Waller D.D., Park J., Tsantrizos Y.S. Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit. Rev. Biochem. Mol. Biol. 2019;54(1):41-60. doi 10.1080/10409238.2019.1568964
46. Watanabe M., Houten S.M., Wang L., Moschetta A., Mangelsdorf D.J., Heyman R.A., Moore D.D., Auwerx J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 2004;113(10):1408-1418. doi 10.1172/JCI21025
47. Zhang F., Sun W., Chen J., Jiang L., Yang P., Huang Y., Gong A., Liu S., Ma S. SREBP-2, a new target of metformin? Drug Des. Devel. Ther. 2018;12:4163-4170. doi 10.2147/DDDT.S190094
48. Zhang T., Yuan D., Xie J., Lei Y., Li J., Fang G., Tian L., Liu J., Cui Y., Zhang M., Xiao Y., Xu Y., Zhang J., Zhu M., Zhan S., Li S. Evolution of the cholesterol biosynthesis pathway in animals. Mol. Biol. Evol. 2019;36(11):2548-2556. doi 10.1093/molbev/msz167
49. Zuniga-Hertz J.P., Patel H.H. The evolution of cholesterol-rich membrane in oxygen adaption: The respiratory system as a model. Front. Physiol. 2019;10:1340. doi 10.3389/fphys.2019.01340