Investigation of metabolic features of glioblastoma tissue and the peritumoral environment using targeted metabolomics screening by LC-MS/MS and gene network analysis








https://doi.org/10.18699/vjgb-24-96
Abstract
The metabolomic profiles of glioblastoma and surrounding brain tissue, comprising 17 glioblastoma samples and 15 peritumoral tissue samples, were thoroughly analyzed in this investigation. The LC-MS/MS method was used to analyze over 400 metabolites, revealing significant variations in metabolite content between tumor and peritumoral tissues. Statistical analyses, including the Mann–Whitney and Cucconi tests, identified several metabolites, particularly ceramides, that showed significant differences between glioblastoma and peritumoral tissues. Pathway analysis using the KEGG database, conducted with MetaboAnalyst 6.0, revealed a statistically significant overrepresentation of sphingolipid metabolism, suggesting a critical role of these lipid molecules in glioblastoma pathogenesis. Using computational systems biology and artificial intelligence methods implemented in a cognitive platform, ANDSystem, molecular genetic regulatory pathways were reconstructed to describe potential mechanisms underlying the dysfunction of sphingolipid metabolism enzymes. These reconstructed pathways were integrated into a regulatory gene network comprising 15 genes, 329 proteins, and 389 interactions. Notably, 119 out of the 294 proteins regulating the key enzymes of sphingolipid metabolism were associated with glioblastoma. Analysis of the overrepresentation of Gene Ontology biological processes revealed the statistical significance of 184 processes, including apoptosis, the NF-kB signaling pathway, proliferation, migration, angiogenesis, and pyroptosis, many of which play an important role in oncogenesis. The findings of this study emphasize the pivotal role of sphingolipid metabolism in glioblastoma development and open new prospects for therapeutic approaches modulating this metabolism.
Keywords
About the Authors
N. V. BasovRussian Federation
Novosibirsk
A. V. Adamovskaya
Russian Federation
Novosibirsk
A. D. Rogachev
Russian Federation
Novosibirsk
E. V. Gaisler
Russian Federation
Novosibirsk
P. S. Demenkov
Russian Federation
Novosibirsk
T. V. Ivanisenko
Russian Federation
Novosibirsk
A. S. Venzel
Russian Federation
Novosibirsk
S. V. Mishinov
Russian Federation
Novosibirsk
V. V. Stupak
Russian Federation
Novosibirsk
S. V. Cheresiz
Russian Federation
Novosibirsk
O. S. Oleshko
Russian Federation
Novosibirsk
E. A. Butikova
Russian Federation
Novosibirsk
A. E. Osechkova
Russian Federation
Novosibirsk
Yu. S. Sotnikova
Russian Federation
Novosibirsk
Y. V. Patrushev
Russian Federation
Novosibirsk
A. S. Pozdnyakov
Russian Federation
Irkutsk
I. N. Lavrik
Russian Federation
Novosibirsk
V. A. Ivanisenko
Russian Federation
Novosibirsk
A. G. Pokrovsky
Russian Federation
Novosibirsk
References
1. Adams K.J., Pratt B., Bose N., Dubois L.G., St. John-Williams L., Perrott K.M., Ky K., Kapahi P., Sharma V., Maccoss M.J., Moseley M.A., Colton C.A., Maclean B.X., Schilling B., Thompson J.W. Skyline for small molecules: a unifying software package for quantitative metabolomics. J. Proteome Res. 2020;19(4):1447-1458. https://doi.org/10.1021/acs.jproteome.9b00640
2. Antropova E.A., Khlebodarova T.M., Demenkov P.S., Venzel A.S., Ivanisenko N.V., Gavrilenko A.D., Ivanisenko T.V., Adamovskaya A.V., Revva P.M., Lavrik I.N., Ivanisenko V.A. Computer analysis of regulation of hepatocarcinoma marker genes hypermethylated by HCV proteins. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(8):733-742. https://doi.org/10.18699/VJGB-22-89
3. Basov N.V., Rogachev A.D., Aleshkova M.A., Gaisler E.V., Sotnikova Y.S., Patrushev Y.V., Tolstikova T.G., Yarovaya O.I., Pokrovsky A.G., Salakhutdinov N.F. Global LC-MS/MS targeted metabolomics using a combination of HILIC and RP LC separation modes on an organic monolithic column based on 1-vinyl-1,2,4-triazole. Talanta. 2024;267:125168. https://doi.org/10.1016/j.talanta.2023.125168
4. Bernhart E., Damm S., Wintersperger A., Nusshold C., Brunner A.M., Plastira I., Rechberger G., Reicher H., Wadsack C., Zimmer A., Malle E., Sattler W. Interference with distinct steps of sphingolipid synthesis and signaling attenuates proliferation of U87MG glioma cells. Biochem. Pharmacol. 2015;96(2):119-130. https://doi.org/10.1016/j.bcp.2015.05.007
5. Bilal F., Montfort A., Gilhodes J., Garcia V., Riond J., Carpentier S., Filleron T., Colacios C., Levade T., Daher A., Meyer N., Andrieu Abadie N., Ségui B. Sphingomyelin synthase 1 (SMS1) downregulation is associated with sphingolipid reprogramming and a worse prognosis in melanoma. Front. Pharmacol. 2019;10:443. https://doi.org/10.3389/fphar.2019.00443
6. Binder H., Wirth H., Arakelyan A., Lembcke K., Tiys E.S., Ivanisenko V.A., Kolchanov N.A., Kononikhin A., Popov I., Nikolaev E.N., Pastushkova L.K., Larina I.M. Time-course human urine proteomics in space-flight simulation experiments. BMC Genomics. 2014; 15(Suppl.12):S2. https://doi.org/10.1186/1471-2164-15-S12-S2
7. Bragina E.Y., Tiys E.S., Freidin M.B., Koneva L.A., Demenkov P.S., Ivanisenko V.A., Kolchanov N.A., Puzyrev V.P. Insights into pathophysiology of dystropy through the analysis of gene networks: an example of bronchial asthma and tuberculosis. Immunogenetics. 2014;66(7-8):457-465. https://doi.org/10.1007/s00251-014-0786-1
8. Bragina E.Y., Tiys E.S., Rudko A.A., Ivanisenko V.A., Freidin M.B. Novel tuberculosis susceptibility candidate genes revealed by the reconstruction and analysis of associative networks. Infect. Genet. Evol. 2016;46:118-123. https://doi.org/10.1016/j.meegid.2016.10.030
9. Bragina E.Y., Gomboeva D.E., Saik O.V., Ivanisenko V.A., Freidin M.B., Nazarenko M.S., Puzyrev V.P. Apoptosis genes as a key to identification of inverse comorbidity of Huntington’s disease and cancer. Int. J. Mol. Sci. 2023;24(11):9385. https://doi.org/10.3390/ijms24119385
10. Chan B., Manley J., Lee J., Singh S.R. The emerging roles of microRNAs in cancer metabolism. Cancer Lett. 2015;356(2, Part A): 301-308. https://doi.org/10.1016/j.canlet.2014.10.011
11. Chen L., Li Z.Y., Xu S.Y., Zhang X.J., Zhang Y., Luo K., Li W.P. Upregulation of miR-107 inhibits glioma angiogenesis and VEGF expression. Cell. Mol. Neurobiol. 2016;36(1):113-120. https://doi.org/10.1007/s10571-015-0225-3
12. Chen L.P., Zhang N.N., Ren X.Q., He J., Li Y. miR-103/miR-195/miR-15b regulate SALL4 and inhibit proliferation and migration in glioma. Molecules. 2018;23(11):2938. https://doi.org/10.3390/molecules23112938
13. Chen Y., Cao Y. The sphingomyelin synthase family: proteins, diseases, and inhibitors. Biol. Chem. 2017;398(12):1319-1325. https://doi.org/10.1515/hsz-2017-0148
14. Chinnaiyan P., Kensicki E., Bloom G., Prabhu A., Sarcar B., Kahali S., Eschrich S., Qu X., Forsyth P., Gillies R. The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism. Cancer Res. 2012;72(22):5878-5888. https://doi.org/10.1158/0008-5472.CAN-12-1572-T
15. Clarke C.J., Cloessner E.A., Roddy P.L., Hannun Y.A. Neutral sphingomyelinase 2 (nSMase2) is the primary neutral sphingomyelinase isoform activated by tumour necrosis factor-α in MCF-7 cells. Biochem. J. 2011;435(2):381-390. https://doi.org/10.1042/BJ20101752
16. Clarke S.D., Nakamura M.T. Fatty acid synthesis and its regulation. In: Encyclopedia of Biological Chemistry. Acad. Press, 2004;99-103. https://doi.org/10.1016/B0-12-443710-9/00224-6
17. Comerford S.A., Huang Z., Du X., Wang Y., Cai L., Witkiewicz A.K., Walters H., Tantawy M.N., Fu A., Manning H.C., Horton J.D., Hammer R.E., Mcknight S.L., Tu B.P. Acetate dependence of tumors. Cell. 2014;159(7):1591-1602. https://doi.org/10.1016/j.cell.2014.11.020
18. Danielsen T., Rofstad E.K. VEGF, bFGF and EGF in the angiogenesis of human melanoma xenografts. Int. J. Cancer. 1998;76(6): 836-841. https://doi.org/10.1002/(sici)1097-0215(19980610)76:6<836::aid-ijc12>3.0.co;2-0
19. Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. ANDVisio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In Silico Biol. 2011;11(3-4):149-161. https://doi.org/10.3233/ISB-2012-0449
20. Demenkov P.S., Antropova E.A., Adamovskaya A.V., Mishchenko E.L., Khlebodarova T.M., Ivanisenko T.V., Ivanisenko N.V., Venzel A.S., Lavrik I.N., Ivanisenko V.A. Prioritization of potential pharmacological targets for the development of anti-hepatocarcinoma drugs modulating the extrinsic apoptosis pathway: the reconstruction and analysis of associative gene networks help. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(7):784-793. https://doi.org/10.18699/VJGB-23-91
21. Deng Y., Hu J.C., He S.H., Lou B., Ding T.B., Yang J.T., Mo M.G., Ye D.Y., Zhou L., Jiang X.C., Yu K., Dong J.B. Sphingomyelin synthase 2 facilitates M2-like macrophage polarization and tumor progression in a mouse model of triple-negative breast cancer. Acta Pharmacol. Sin. 2021;42(1):149-159. https://doi.org/10.1038/s41401-020-0419-1
22. El-Karim E.A., Hagos E.G., Ghaleb A.M., Yu B., Yang V.W. Krüppellike factor 4 regulates genetic stability in mouse embryonic fibroblasts. Mol. Cancer. 2013;12:89. https://doi.org/10.1186/1476-4598-12-89
23. Fan S.H., Wang Y.Y., Wu Z.Y., Zhang Z.F., Lu J., Li M.Q., Shan Q., Wu D.M., Sun C.H., Hu B., Zheng Y.L. AGPAT9 suppresses cell growth, invasion and metastasis by counteracting acidic tumor microenvironment through KLF4/LASS2/V-ATPase signaling pathway in breast cancer. Oncotarget. 2015;6(21):18406-18417. https://doi.org/10.18632/oncotarget.4074
24. Glaros E.N., Kim W.S., Wu B.J., Suarna C., Quinn C.M., Rye K.A., Stocker R., Jessup W., Garner B. Inhibition of atherosclerosis by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration. Biochem. Pharmacol. 2007;73(9):1340-1346. https://doi.org/10.1016/j.bcp.2006.12.023
25. Gulbins A., Schumacher F., Becker K.A., Wilker B., Soddemann M., Boldrin F., Müller C.P., Edwards M.J., Goodman M., Caldwell C.C., Kleuser B., Kornhuber J., Szabo I., Gulbins E. Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Mol. Psychiatry. 2018;23(12):2324-2346. https://doi.org/10.1038/s41380-018-0090-9
26. Haimovitz-Friedman A., Kan C.C., Ehleiter D., Persaud R.S., McLoughlin M., Fuks Z., Kolesnick R.N. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 1994;180(2):525-535. https://doi.org/10.1084/jem.180.2.525
27. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000; 100(1):57-70. https://doi.org/10.1016/s0092-8674(00)81683-9
28. Heiden M.G.V., Cantley L.C., Thompson C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-1033. https://doi.org/10.1126/science.1160809
29. Hernández-Tiedra S., Fabriàs G., Dávila D., Salanueva Í.J., Casas J., Montes L.R., Antón Z., García-Taboada E., Salazar-Roa M., Lorente M., Nylandsted J., Armstrong J., López-Valero I., McKee C.S., Serrano-Puebla A., García-López R., González-Martínez J., Abad J.L., Hanada K., Boya P., Goñi F., Guzmán M., Lovat P., Jäättelä M., Alonso A., Velasco G. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy. 2016;12(11):2213-2229. https://doi.org/10.1080/15548627.2016.1213927
30. Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(Suppl.11):228. https://doi.org/10.1186/s12859-020-03557-8
31. Ivanisenko T.V., Demenkov P.S., Kolchanov N.A., Ivanisenko V.A. The new version of the ANDDigest tool with improved ai-based short names recognition. Int. J. Mol. Sci. 2022;23(23):14934. https://doi.org/10.3390/ijms232314934
32. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl.2):S2. https://doi.org/10.1186/1752-0509-9-S2-S2
33. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019;20(Suppl.1):34. https://doi.org/10.1186/s12859-018-2567-6
34. Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Yu.I., Voevoda S.M., Karpenko T.N., Velichko A.J., Voevoda M.I., Kolchanov N.A., Pokrovsky A.G. Plasma metabolo mics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12(1):19977. https://doi.org/10.1038/s41598-022-24170-0
35. Ivanisenko V.A., Basov N.V., Makarova A.A., Venzel A.S., Rogachev A.D., Demenkov P.S., Ivanisenko T.V., Kleshchev M.A., Gaisler E.V., Moroz G.B., Plesko V.V., Sotnikova Y.S., Patrushev Y.V., Lomivorotov V.V., Kolchanov N.A., Pokrovsky A.G. Gene networks for use in metabolomic data analysis of blood plasma from patients with postoperative delirium. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(7):768-775. https://doi.org/10.18699/VJGB-23-89
36. Jaroch K., Modrakowska P., Bojko B. Glioblastoma metabolomics - in vitro studies. Metabolites. 2021;11(5):315. https://doi.org/10.3390/metabo11050315
37. Kambara H., Liu F., Zhang X., Liu P., Bajrami B., Teng Y., Zhao L., Zhou S., Yu H., Zhou W., Silberstein L.E., Cheng T., Han M., Xu Y., Luo H.R. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep. 2018;22(11):2924-2936. https://doi.org/10.1016/j.celrep.2018.02.067
38. Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Yu.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):833-850 (in Russian)
39. Koppenol W.H., Bounds P.L., Dang C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer. 2011;11(5):325-337. https://doi.org/10.1038/nrc3038
40. Kornhuber J., Tripal P., Reichel M., Mühle C., Rhein C., Muehlbacher M., Groemer T.W., Gulbins E. Functional inhibitors of acid sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol. Biochem. 2010; 26(1):9-20. https://doi.org/10.1159/000315101
41. Kraveka J.M., Li L., Szulc Z.M., Bielawski J., Ogretmen B., Hannun Y.A., Obeid L.M., Bielawska A. Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J. Biol. Chem. 2007;282(23):16718-16728. https://doi.org/10.1074/jbc.M700647200
42. Lacroix M., Riscal R., Arena G., Linares L.K., Le Cam L. Metabolic functions of the tumor suppressor p53: implications in normal physiology, metabolic disorders, and cancer. Mol. Metab. 2020;33:2-22. https://doi.org/10.1016/j.molmet.2019.10.002
43. Lai M., La Rocca V., Amato R., Freer G., Costa M., Spezia P.G., Quaranta P., Lombardo G., Piomelli D., Pistello M. Ablation of acid ceramidase impairs autophagy and mitochondria activity in melanoma cells. Int. J. Mol. Sci. 2021;22(6):3247. https://doi.org/10.3390/ijms22063247
44. Lai Y.-J., Lin V.T.G., Zheng Y., Benveniste E.N., Lin F.-T. The adaptor protein TRIP6 antagonizes fas-induced apoptosis but promotes its effect on cell migration. Mol. Cell. Biol. 2010;30(23):5582-5596. https://doi.org/10.1128/MCB.00134-10
45. Lara-Velazquez M., Al-Kharboosh R., Jeanneret S., Vazquez-Ramos C., Mahato D., Tavanaiepour D., Rahmathulla G., Quinone-Hinojosa A. Advances in brain tumor surgery for glioblastoma in adults. Brain Sci. 2017;7(12):166. https://doi.org/10.3390/brainsci7120166
46. Larina I.M., Pastushkova L.K., Tiys E.S., Kireev K.S., Kononikhin A.S., Starodubtseva N.L., Popov I.A., Custaud M.A., Dobrokhotov I.V., Nikolaev E.N., Kolchanov N.A., Ivanisenko V.A. Permanent proteins in the urine of healthy humans during the Mars-500 experiment. J. Bioinform. Comput. Biol. 2015;13(1):1540001. https://doi.org/10.1142/S0219720015400016
47. Lee Y.S., Choi K.M., Choi M.H., Ji S.Y., Lee S., Sin D.M., Oh K.W., Lee Y.M., Hong J.T., Yun Y.P., Yoo H.S. Serine palmitoyltransferase inhibitor myriocin induces growth inhibition of B16F10 melanoma cells through G2/M phase arrest. Cell Prolif. 2011;44(4):320-329. https://doi.org/10.1111/j.1365-2184.2011.00761.x
48. Li K., Naviaux J.C., Bright A.T., Wang L., Naviaux R.K. A robust, single-injection method for targeted, broad-spectrum plasma metabolomics. Metabolomics. 2017;13(10):122. https://doi.org/10.1007/s11306-017-1264-1
49. Liberti M.V., Locasale J.W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 2016;41(3):211-218. https://doi.org/10.1016/j.tibs.2015.12.001
50. Lin J., Lai X., Liu X., Yan H., Wu C. Pyroptosis in glioblastoma: a crucial regulator of the tumour immune microenvironment and a predictor of prognosis. J. Cell. Mol. Med. 2022;26(5):1579-1593. https://doi.org/10.1111/jcmm.17200
51. Lin M., Liao W., Dong M., Zhu R., Xiao J., Sun T., Chen Z., Wu B., Jin J. Exosomal neutral sphingomyelinase 1 suppresses hepatocellular carcinoma via decreasing the ratio of sphingomyelin/ceramide. FEBS J. 2018;285(20):3835-3848. https://doi.org/10.1111/febs.14635
52. Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., Von Deimling A., Ellison D.W. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncology. 2021;23(8):1231-1251. https://doi.org/10.1093/neuonc/noab106
53. Madigan J.P., Robey R.W., Poprawski J.E., Huang H., Clarke C.J., Gottesman M.M., Cabot M.C., Rosenberg D.W. A role for ceramide glycosylation in resistance to oxaliplatin in colorectal cancer. Exp. Cell Res. 2020;388(2):111860. https://doi.org/10.1016/j.yexcr.2020.111860
54. Mashimo T., Pichumani K., Vemireddy V., Hatanpaa K.J., Singh D.K., Sirasanagandla S., Nannepaga S., Piccirillo S.G., Kovacs Z., Foong C., Huang Z., Barnett S., Mickey B.E., Deberardinis R.J., Tu B.P., Maher E.A., Bachoo R.M. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014; 159(7):1603-1614. https://doi.org/10.1016/j.cell.2014.11.025
55. Maurer B.J., Metelitsa L.S., Seeger R.C., Cabot M.C., Reynolds C.P. Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines. J. Natl. Cancer Inst. 1999;91(13):1138-1146. https://doi.org/10.1093/jnci/91.13.1138
56. Melland-Smith M., Ermini L., Chauvin S., Craig-Barnes H., Tagliaferro A., Todros T., Post M., Caniggia I. Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia. Autophagy. 2015;11(4):653-669. https://doi.org/10.1080/15548627.2015.1034414
57. Moro K., Nagahashi M., Gabriel E., Takabe K., Wakai T. Clinical application of ceramide in cancer treatment. Breast Cancer. 2019;26(4): 407-415. https://doi.org/10.1007/s12282-019-00953-8
58. Naser E., Kadow S., Schumacher F., Mohamed Z.H., Kappe C., Hessler G., Pollmeier B., Kleuser B., Arenz C., Becker K.A., Gulbins E., Carpinteiro A. Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro. J. Lipid Res. 2020;61(6):896-910. https://doi.org/10.1194/jlr.RA120000682
59. Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer. 2018;18(1):33-50. https://doi.org/10.1038/nrc.2017.96
60. Oltra S.S., Colomo S., Sin L., Pérez-López M., Lázaro S., Molina-Crespo A., Choi K.H., Ros-Pardo D., Martínez L., Morales S., González-Paramos C., Orantes A., Soriano M., Hernández A., Lluch A., Rojo F., Albanell J., Gómez-Puertas P., Ko J.K., Sarrió D., Moreno-Bueno G. Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells. Cell Death Differ. 2023;30(5):1366-1381. https://doi.org/10.1038/s41418-023-01143-y
61. Omuro A., DeAngelis L.M. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842-1850. https://doi.org/10.1001/jama.2013.280319
62. Pandey R., Caflisch L., Lodi A., Brenner A.J., Tiziani S. Metabolomic signature of brain cancer. Mol. Carcinog. 2017;56(11):2355-2371. https://doi.org/10.1002/mc.22694
63. Pang Z., Chong J., Zhou G., de Lima Morais D.A., Chang L., Barrette M., Gauthier C., Jacques P.-É., Li S., Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49(W1):W388-W396. https://doi.org/10.1093/nar/gkab382
64. Pastushkova L.K., Kireev K.S., Kononikhin A.S., Tiys E.S., Popov I.A., Starodubtseva N.L., Dobrokhotov I.V., Ivanisenko V.A., Larina I.M., Kolchanov N.A., Nikolaev E.N. Detection of renal tissue and urinary tract proteins in the human urine after space flight. PLoS One. 2013;8(8):e71652. https://doi.org/10.1371/journal.pone.0071652
65. Pastushkova L.K., Kashirina D.N., Brzhozovskiy A.G., Kononikhin A.S., Tiys E.S., Ivanisenko V.A., Koloteva M.I., Nikolaev E.N., Larina I.M. Evaluation of cardiovascular system state by urine proteome after manned space flight. Acta Astronaut. 2019;160:594-600. https://doi.org/10.1016/j.actaastro.2019.02.015
66. Patrushev Y., Yudina Y., Sidelnikov V. Monolithic rod columns for HPLC based on divinylbenzene-styrene copolymer with 1-vinylimidazole and 4-vinylpyridine. J. Liq. Chromatogr. Relat. Technol. 2018;41(8):458-466. https://doi.org/10.1080/10826076.2018.1455149
67. Pike L.S., Smift A.L., Croteau N.J., Ferrick D.A., Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim. Biophys. Acta. 2011; 1807(6):726-734. https://doi.org/10.1016/j.bbabio.2010.10.022
68. Pizer E.S., Thupari J., Han W.F., Pinn M.L., Chrest F.J., Frehywot G.L., Townsend C.A., Kuhajda F.P. Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res. 2000;60(2):213-218
69. Poli M., Derosas M., Luscieti S., Cavadini P., Campanella A., Verardi R., Finazzi D., Arosio P. Pantothenate kinase-2 (Pank2) silencing causes cell growth reduction, cell-specific ferroportin upregulation and iron deregulation. Neurobiol. Dis. 2010;39(2):204-210. https://doi.org/10.1016/j.nbd.2010.04.009
70. Popik O.V., Petrovskiy E.D., Mishchenko E.L., Lavrik I.N., Ivanisenko V.A. Mosaic gene network modelling identified new regulatory mechanisms in HCV infection. Virus Res. 2016;218:71-78. https://doi.org/10.1016/j.virusres.2015.10.004
71. Poteet E., Choudhury G.R., Winters A., Li W., Ryou M.G., Liu R., Tang L., Ghorpade A., Wen Y., Yuan F., Keir S.T., Yan H., Bigner D.D., Simpkins J.W., Yang S.H. Reversing the Warburg effect as a treatment for glioblastoma. J. Biol. Chem. 2013;288(13):9153-9164. https://doi.org/10.1074/jbc.M112.440354
72. Prause K., Naseri G., Schumacher F., Kappe C., Kleuser B., Arenz C. A photocaged inhibitor of acid sphingomyelinase. Chem. Commun. 2020;56(94):14885-14888. https://doi.org/10.1039/d0cc06661c
73. Rao Z., Zhu Y., Yang P., Chen Z., Xia Y., Qiao C., Liu W., Deng H., Li J., Ning P., Wang Z. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022;12(9):4310-4329. https://doi.org/10.7150/thno.71086
74. Ren S., Babelova A., Moreth K., Xin C., Eberhardt W., Doller A., Pavenstädt H., Schaefer L., Pfeilschifter J., Huwiler A. Transforming growth factor-Β2 upregulates sphingosine kinase-1 activity, which in turn attenuates the fibrotic response to TGF-Β2 by impeding CTGF expression. Kidney Int. 2009;76(8):857-867. https://doi.org/10.1038/ki.2009.297
75. Riboni L., Campanella R., Bassi R., Villani R., Gaini S.M., Martinelli- Boneschi F., Viani P., Tettamanti G. Ceramide levels are inversely associated with malignant progression of human glial tumors. Glia. 2002;39(2):105-113. https://doi.org/10.1002/glia.10087
76. Rogachev A.D., Alemasov N.A., Ivanisenko V.A., Ivanisenko N.V., Gaisler E.V., Oleshko O.S., Cheresiz S.V., Mishinov S.V., Stupak V.V., Pokrovsky A.G. Correlation of metabolic profiles of plasma and cerebrospinal fluid of high-grade glioma patients. Metabolites. 2021;11(3):133. https://doi.org/10.3390/metabo11030133
77. Saik O.V., Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. Interactome of the hepatitis C virus: literature mining with ANDSystem. Virus Res. 2016;218:40-48. https://doi.org/10.1016/j.virusres.2015.12.003
78. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Dosenko V.E., Zolotareva O.I., Choynzonov E.L., Hofestaedt R., Ivanisenko V.A. Search for new candidate genes involved in the comorbidity of asthma and hypertension based on automatic analysis of scientific literature. J. Integr. Bioinform. 2018a;15(4):20180054. https://doi.org/10.1515/jib-2018-0054
79. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Goncharova I.A., Dosenko V.E., Zolotareva O.I., Hofestaedt R., Lavrik I.N., Rogaev E.I., Ivanisenko V.A. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med. Genomics. 2018b;11(Suppl.1): 15. https://doi.org/10.1186/s12920-018-0331-4
80. Saik O.V., Nimaev V.V., Usmonov D.B., Demenkov P.S., Ivanisenko T.V., Lavrik I.N., Ivanisenko V.A. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med. Genomics. 2019;12(Suppl. 2):47. https://doi.org/10.1186/s12920-019-0492-9
81. Sano O., Kazetani K.I., Adachi R., Kurasawa O., Kawamoto T., Iwata H. Using a biologically annotated library to analyze the anticancer mechanism of serine palmitoyl transferase (SPT) inhibitors. FEBS Open Bio. 2017;7(4):495-503. https://doi.org/10.1002/2211-5463.12196
82. Santos C.R., Schulze A. Lipid metabolism in cancer. FEBS J. 2012; 279(15):2610-2623. https://doi.org/10.1111/j.1742-4658.2012.08644.x
83. Schiffmann S., Hartmann D., Fuchs S., Birod K., Ferreirs N., Schreiber Y., Zivkovic A., Geisslinger G., Grösch S., Stark H. Inhibitors of specific ceramide synthases. Biochimie. 2012;94(2):558-565. https://doi.org/10.1016/j.biochi.2011.09.007
84. Siegal T. Clinical impact of molecular biomarkers in gliomas. J. Clin. Neurosci. 2015;22(3):437-444. https://doi.org/10.1016/j.jocn.2014.10.004
85. Signorelli P., Munoz-Olaya J.M., Gagliostro V., Casas J., Ghidoni R., Fabriàs G. Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett. 2009;282(2):238-243. https://doi.org/10.1016/j.canlet.2009.03.020
86. Steiner R., Saied E.M., Othman A., Arenz C., Maccarone A.T., Poad B.L.J., Blanksby S.J., Von Eckardstein A., Hornemann T. Elucidating the chemical structure of native 1-deoxysphingosine. J. Lipid Res. 2016;57(7):1194-1203. https://doi.org/10.1194/jlr.M067033
87. Tea M.N., Poonnoose S.I., Pitson S.M. Targeting the sphingolipid system as a therapeutic direction for glioblastoma. Cancers (Basel). 2020;12(1):111. https://doi.org/10.3390/cancers12010111
88. Turner N., Lim X.Y., Toop H.D., Osborne B., Brandon A.E., Taylor E.N., Fiveash C.E., Govindaraju H., Teo J.D., McEwen H.P., Couttas T.A., Butler S.M., Das A., Kowalski G.M., Bruce C.R., Hoehn K.L., Fath T., Schmitz-Peiffer C., Cooney G.J., Montgomery M.K., Morris J.C., Don A.S. A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nat. Commun. 2018;9(1):3165. https://doi.org/10.1038/s41467-018-05613-7
89. Vollmann-Zwerenz A., Leidgens V., Feliciello G., Klein C.A., Hau P. Tumor cell invasion in glioblastoma. Int. J. Mol. Sci. 2020;21(6): 1932. https://doi.org/10.3390/ijms21061932
90. Wang Y., Zhang C., Jin Y., Wang S., He Q., Liu Z., Ai Q., Lei Y., Li Y., Song F., Bu Y. Alkaline ceramidase 2 is a novel direct target of p53 and induces autophagy and apoptosis through ROS generation. Sci. Rep. 2017;7:44573. https://doi.org/10.1038/srep44573
91. Wang Z., Wen L., Zhu F., Wang Y., Xie Q., Chen Z., Li Y. Overexpression of ceramide synthase 1 increases C18-ceramide and leads to lethal autophagy in human glioma. Oncotarget. 2017;8(61):104022-104036. https://doi.org/10.18632/oncotarget.21955
92. Warburg O. On the origin of cancer cells. Science. 1956;123(3191): 309-314. https://doi.org/10.1126/science.123.3191.309
93. Wilfred B.R., Wang W.X., Nelson P.T. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol. Genet. Metab. 2007;91(3):209-217. https://doi.org/10.1016/j.ymgme.2007.03.011
94. Wolf A., Agnihotri S., Guha A. Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget. 2010;1(7):552-562. https://doi.org/10.18632/oncotarget.190
95. Xu R., Garcia-Barros M., Wen S., Li F., Lin C.L., Hannun Y.A., Obeid L.M., Mao C. Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2. Cell Death Differ. 2018;25(5):841-856. https://doi.org/10.1038/s41418-017-0018-y Youngblood M.W., Stupp R., Sonabend A.M. Role of resection in glioblastoma management. Neurosurg. Clin. N. Am. 2021;32(1):9-22. https://doi.org/10.1016/j.nec.2020.08.002
96. Yuan M., Breitkopf S.B., Yang X., Asara J.M. A positive/negative ion - switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012;7(5):872-881. https://doi.org/10.1038/nprot.2012.024
97. Zhang S., Huang P., Dai H., Li Q., Hu L., Peng J., Jiang S., Xu Y., Wu Z., Nie H., Zhang Z., Yin W., Zhang X., Lu J. TIMELESS regulates sphingolipid metabolism and tumor cell growth through Sp1/ACER2/S1P axis in ER-positive breast cancer. Cell Death Dis. 2020;11(10):892. https://doi.org/10.1038/s41419-020-03106-4
98. Zheng K., Chen Z., Feng H., Chen Y., Zhang C., Yu J., Luo Y., Zhao L., Jiang X., Shi F. Sphingomyelin synthase 2 promotes an aggressive breast cancer phenotype by disrupting the homoeostasis of ceramide and sphingomyelin. Cell Death Dis. 2019;10(3):157. https://doi.org/10.1038/s41419-019-1303-0
99. Zhou W., Wahl D.R. Metabolic abnormalities in glioblastoma and metabolic strategies to overcome treatment resistance. Cancers (Basel). 2019;11(9):1231. https://doi.org/10.3390/cancers11091231
100. Zolotareva O., Saik O.V., Königs C., Bragina E.Y., Goncharova I.A., Freidin M.B., Dosenko V.E., Ivanisenko V.A., Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci. Rep. 2019;9(1):16302. https://doi.org/10.1038/s41598-019-52762-w