Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Investigation of metabolic features of glioblastoma tissue and the peritumoral environment using targeted metabolomics screening by LC-MS/MS and gene network analysis

https://doi.org/10.18699/vjgb-24-96

Abstract

The metabolomic profiles of glioblastoma and surrounding brain tissue, comprising 17 glioblastoma samples and 15 peritumoral tissue samples, were thoroughly analyzed in this investigation. The LC-MS/MS method was used to analyze over 400 metabolites, revealing significant variations in metabolite content between tumor and peritumoral tissues. Statistical analyses, including the Mann–Whitney and Cucconi tests, identified several metabolites, particularly ceramides, that showed significant differences between glioblastoma and peritumoral tissues. Pathway analysis using the KEGG database, conducted with MetaboAnalyst 6.0, revealed a statistically sig­nificant overrepresentation of sphingolipid metabolism, suggesting a critical role of these lipid molecules in glio­blastoma pathogenesis. Using computational systems biology and artificial intelligence methods implemented in a cognitive platform, ANDSystem, molecular genetic regulatory pathways were reconstructed to describe potential mechanisms underlying the dysfunction of sphingolipid metabolism enzymes. These reconstructed pathways were integrated into a regulatory gene network comprising 15 genes, 329 proteins, and 389 interactions. Notably, 119 out of the 294 proteins regulating the key enzymes of sphingolipid metabolism were associated with glioblastoma. Analysis of the overrepresentation of Gene Ontology biological processes revealed the statistical significance of 184 processes, including apoptosis, the NF-kB signaling pathway, proliferation, migration, angiogenesis, and py­roptosis, many of which play an important role in oncogenesis. The findings of this study emphasize the pivotal role of sphingolipid metabolism in glioblastoma development and open new prospects for therapeutic approaches modulating this metabolism.

About the Authors

N. V. Basov
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



A. V. Adamovskaya
Novosibirsk State University; Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. D. Rogachev
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



E. V. Gaisler
Novosibirsk State University
Russian Federation

Novosibirsk



P. S. Demenkov
Novosibirsk State University; Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



T. V. Ivanisenko
Novosibirsk State University; Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. S. Venzel
Novosibirsk State University; Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



S. V. Mishinov
Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Tsivyan of the Ministry of Health of the Russian Federation
Russian Federation

Novosibirsk



V. V. Stupak
Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Tsivyan of the Ministry of Health of the Russian Federation
Russian Federation

Novosibirsk



S. V. Cheresiz
Novosibirsk State University
Russian Federation

Novosibirsk



O. S. Oleshko
Novosibirsk State University
Russian Federation

Novosibirsk



E. A. Butikova
Novosibirsk State University; Research Institute of Clinical and Experimental Lymрhology – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. E. Osechkova
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences; Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



Yu. S. Sotnikova
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University; Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



Y. V. Patrushev
Novosibirsk State University; Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. S. Pozdnyakov
A.E. Favorsky Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Irkutsk



I. N. Lavrik
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



V. A. Ivanisenko
Novosibirsk State University; Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Kurchatov Genomic Center of ICG SB RAS
Russian Federation

Novosibirsk



A. G. Pokrovsky
Novosibirsk State University
Russian Federation

Novosibirsk



References

1. Adams K.J., Pratt B., Bose N., Dubois L.G., St. John-Williams L., Perrott K.M., Ky K., Kapahi P., Sharma V., Maccoss M.J., Moseley M.A., Colton C.A., Maclean B.X., Schilling B., Thompson J.W. Skyline for small molecules: a unifying software package for quantitative metabolomics. J. Proteome Res. 2020;19(4):1447-1458. doi 10.1021/acs.jproteome.9b00640

2. Antropova E.A., Khlebodarova T.M., Demenkov P.S., Venzel A.S., Ivanisenko N.V., Gavrilenko A.D., Ivanisenko T.V., Adamovskaya A.V., Revva P.M., Lavrik I.N., Ivanisenko V.A. Computer analysis of regulation of hepatocarcinoma marker genes hypermethylated by HCV proteins. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(8):733-742. doi 10.18699/VJGB-22-89

3. Basov N.V., Rogachev A.D., Aleshkova M.A., Gaisler E.V., Sotnikova Y.S., Patrushev Y.V., Tolstikova T.G., Yarovaya O.I., Pokrovsky A.G., Salakhutdinov N.F. Global LC-MS/MS targeted metabolomics using a combination of HILIC and RP LC separation modes on an organic monolithic column based on 1-vinyl-1,2,4-triazole. Talanta. 2024;267:125168. doi 10.1016/j.talanta.2023.125168

4. Bernhart E., Damm S., Wintersperger A., Nusshold C., Brunner A.M., Plastira I., Rechberger G., Reicher H., Wadsack C., Zimmer A., Malle E., Sattler W. Interference with distinct steps of sphingolipid synthesis and signaling attenuates proliferation of U87MG glioma cells. Biochem. Pharmacol. 2015;96(2):119-130. doi 10.1016/j.bcp.2015.05.007

5. Bilal F., Montfort A., Gilhodes J., Garcia V., Riond J., Carpentier S., Filleron T., Colacios C., Levade T., Daher A., Meyer N., Andrieu Abadie N., Ségui B. Sphingomyelin synthase 1 (SMS1) downregulation is associated with sphingolipid reprogramming and a worse prognosis in melanoma. Front. Pharmacol. 2019;10:443. doi 10.3389/fphar.2019.00443

6. Binder H., Wirth H., Arakelyan A., Lembcke K., Tiys E.S., Ivanisenko V.A., Kolchanov N.A., Kononikhin A., Popov I., Nikolaev E.N., Pastushkova L.K., Larina I.M. Time-course human urine proteomics in space-flight simulation experiments. BMC Genomics. 2014; 15(Suppl.12):S2. doi 10.1186/1471-2164-15-S12-S2

7. Bragina E.Y., Tiys E.S., Freidin M.B., Koneva L.A., Demenkov P.S., Ivanisenko V.A., Kolchanov N.A., Puzyrev V.P. Insights into pathophysiology of dystropy through the analysis of gene networks: an example of bronchial asthma and tuberculosis. Immunogenetics. 2014;66(7-8):457-465. doi 10.1007/s00251-014-0786-1

8. Bragina E.Y., Tiys E.S., Rudko A.A., Ivanisenko V.A., Freidin M.B. Novel tuberculosis susceptibility candidate genes revealed by the reconstruction and analysis of associative networks. Infect. Genet. Evol. 2016;46:118-123. doi 10.1016/j.meegid.2016.10.030

9. Bragina E.Y., Gomboeva D.E., Saik O.V., Ivanisenko V.A., Freidin M.B., Nazarenko M.S., Puzyrev V.P. Apoptosis genes as a key to identification of inverse comorbidity of Huntington’s disease and cancer. Int. J. Mol. Sci. 2023;24(11):9385. doi 10.3390/ijms24119385

10. Chan B., Manley J., Lee J., Singh S.R. The emerging roles of microRNAs in cancer metabolism. Cancer Lett. 2015;356(2, Part A): 301-308. doi 10.1016/j.canlet.2014.10.011

11. Chen L., Li Z.Y., Xu S.Y., Zhang X.J., Zhang Y., Luo K., Li W.P. Upregulation of miR-107 inhibits glioma angiogenesis and VEGF expression. Cell. Mol. Neurobiol. 2016;36(1):113-120. doi 10.1007/s10571-015-0225-3

12. Chen L.P., Zhang N.N., Ren X.Q., He J., Li Y. miR-103/miR-195/miR-15b regulate SALL4 and inhibit proliferation and migration in glioma. Molecules. 2018;23(11):2938. doi 10.3390/molecules23112938

13. Chen Y., Cao Y. The sphingomyelin synthase family: proteins, diseases, and inhibitors. Biol. Chem. 2017;398(12):1319-1325. doi 10.1515/hsz-2017-0148

14. Chinnaiyan P., Kensicki E., Bloom G., Prabhu A., Sarcar B., Kahali S., Eschrich S., Qu X., Forsyth P., Gillies R. The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism. Cancer Res. 2012;72(22):5878-5888. doi 10.1158/0008-5472.CAN-12-1572-T

15. Clarke C.J., Cloessner E.A., Roddy P.L., Hannun Y.A. Neutral sphingomyelinase 2 (nSMase2) is the primary neutral sphingomyelinase isoform activated by tumour necrosis factor-α in MCF-7 cells. Biochem. J. 2011;435(2):381-390. doi 10.1042/BJ20101752

16. Clarke S.D., Nakamura M.T. Fatty acid synthesis and its regulation. In: Encyclopedia of Biological Chemistry. Acad. Press, 2004;99-103. doi 10.1016/B0-12-443710-9/00224-6

17. Comerford S.A., Huang Z., Du X., Wang Y., Cai L., Witkiewicz A.K., Walters H., Tantawy M.N., Fu A., Manning H.C., Horton J.D., Hammer R.E., Mcknight S.L., Tu B.P. Acetate dependence of tumors. Cell. 2014;159(7):1591-1602. doi 10.1016/j.cell.2014.11.020

18. Danielsen T., Rofstad E.K. VEGF, bFGF and EGF in the angiogenesis of human melanoma xenografts. Int. J. Cancer. 1998;76(6): 836-841. doi 10.1002/(sici)1097-0215(19980610)76:6<836::aid-ijc12>3.0.co;2-0

19. Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. ANDVisio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In Silico Biol. 2011;11(3-4):149-161. doi 10.3233/ISB-2012-0449

20. Demenkov P.S., Antropova E.A., Adamovskaya A.V., Mishchenko E.L., Khlebodarova T.M., Ivanisenko T.V., Ivanisenko N.V., Venzel A.S., Lavrik I.N., Ivanisenko V.A. Prioritization of potential pharmacological targets for the development of anti-hepatocarcinoma drugs modulating the extrinsic apoptosis pathway: the reconstruction and analysis of associative gene networks help. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(7):784-793. doi 10.18699/VJGB-23-91

21. Deng Y., Hu J.C., He S.H., Lou B., Ding T.B., Yang J.T., Mo M.G., Ye D.Y., Zhou L., Jiang X.C., Yu K., Dong J.B. Sphingomyelin synthase 2 facilitates M2-like macrophage polarization and tumor progression in a mouse model of triple-negative breast cancer. Acta Pharmacol. Sin. 2021;42(1):149-159. doi 10.1038/s41401-020-0419-1

22. El-Karim E.A., Hagos E.G., Ghaleb A.M., Yu B., Yang V.W. Krüppellike factor 4 regulates genetic stability in mouse embryonic fibroblasts. Mol. Cancer. 2013;12:89. doi 10.1186/1476-4598-12-89

23. Fan S.H., Wang Y.Y., Wu Z.Y., Zhang Z.F., Lu J., Li M.Q., Shan Q., Wu D.M., Sun C.H., Hu B., Zheng Y.L. AGPAT9 suppresses cell growth, invasion and metastasis by counteracting acidic tumor microenvironment through KLF4/LASS2/V-ATPase signaling pathway in breast cancer. Oncotarget. 2015;6(21):18406-18417. doi 10.18632/oncotarget.4074

24. Glaros E.N., Kim W.S., Wu B.J., Suarna C., Quinn C.M., Rye K.A., Stocker R., Jessup W., Garner B. Inhibition of atherosclerosis by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration. Biochem. Pharmacol. 2007;73(9):1340-1346. doi 10.1016/j.bcp.2006.12.023

25. Gulbins A., Schumacher F., Becker K.A., Wilker B., Soddemann M., Boldrin F., Müller C.P., Edwards M.J., Goodman M., Caldwell C.C., Kleuser B., Kornhuber J., Szabo I., Gulbins E. Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Mol. Psychiatry. 2018;23(12):2324-2346. doi 10.1038/s41380-018-0090-9

26. Haimovitz-Friedman A., Kan C.C., Ehleiter D., Persaud R.S., McLoughlin M., Fuks Z., Kolesnick R.N. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 1994;180(2):525-535. doi 10.1084/jem.180.2.525

27. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000; 100(1):57-70. doi 10.1016/s0092-8674(00)81683-9

28. Heiden M.G.V., Cantley L.C., Thompson C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-1033. doi 10.1126/science.1160809

29. Hernández-Tiedra S., Fabriàs G., Dávila D., Salanueva Í.J., Casas J., Montes L.R., Antón Z., García-Taboada E., Salazar-Roa M., Lorente M., Nylandsted J., Armstrong J., López-Valero I., McKee C.S., Serrano-Puebla A., García-López R., González-Martínez J., Abad J.L., Hanada K., Boya P., Goñi F., Guzmán M., Lovat P., Jäättelä M., Alonso A., Velasco G. Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy. 2016;12(11):2213-2229. doi 10.1080/15548627.2016.1213927

30. Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(Suppl.11):228. doi 10.1186/s12859-020-03557-8

31. Ivanisenko T.V., Demenkov P.S., Kolchanov N.A., Ivanisenko V.A. The new version of the ANDDigest tool with improved ai-based short names recognition. Int. J. Mol. Sci. 2022;23(23):14934. doi 10.3390/ijms232314934

32. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl.2):S2. doi 10.1186/1752-0509-9-S2-S2

33. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019;20(Suppl.1):34. doi 10.1186/s12859-018-2567-6

34. Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Yu.I., Voevoda S.M., Karpenko T.N., Velichko A.J., Voevoda M.I., Kolchanov N.A., Pokrovsky A.G. Plasma metabolo mics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12(1):19977. doi 10.1038/s41598-022-24170-0

35. Ivanisenko V.A., Basov N.V., Makarova A.A., Venzel A.S., Rogachev A.D., Demenkov P.S., Ivanisenko T.V., Kleshchev M.A., Gaisler E.V., Moroz G.B., Plesko V.V., Sotnikova Y.S., Patrushev Y.V., Lomivorotov V.V., Kolchanov N.A., Pokrovsky A.G. Gene networks for use in metabolomic data analysis of blood plasma from patients with postoperative delirium. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(7):768-775. doi 10.18699/VJGB-23-89

36. Jaroch K., Modrakowska P., Bojko B. Glioblastoma metabolomics – in vitro studies. Metabolites. 2021;11(5):315. doi 10.3390/metabo11050315

37. Kambara H., Liu F., Zhang X., Liu P., Bajrami B., Teng Y., Zhao L., Zhou S., Yu H., Zhou W., Silberstein L.E., Cheng T., Han M., Xu Y., Luo H.R. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep. 2018;22(11):2924-2936. doi 10.1016/j.celrep.2018.02.067

38. Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Yu.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):833-850 (in Russian)

39. Koppenol W.H., Bounds P.L., Dang C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer. 2011;11(5):325-337. doi 10.1038/nrc3038

40. Kornhuber J., Tripal P., Reichel M., Mühle C., Rhein C., Muehlbacher M., Groemer T.W., Gulbins E. Functional inhibitors of acid sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol. Biochem. 2010; 26(1):9-20. doi 10.1159/000315101

41. Kraveka J.M., Li L., Szulc Z.M., Bielawski J., Ogretmen B., Hannun Y.A., Obeid L.M., Bielawska A. Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J. Biol. Chem. 2007;282(23):16718-16728. doi 10.1074/jbc.M700647200

42. Lacroix M., Riscal R., Arena G., Linares L.K., Le Cam L. Metabolic functions of the tumor suppressor p53: implications in normal physiology, metabolic disorders, and cancer. Mol. Metab. 2020;33:2-22. doi 10.1016/j.molmet.2019.10.002

43. Lai M., La Rocca V., Amato R., Freer G., Costa M., Spezia P.G., Quaranta P., Lombardo G., Piomelli D., Pistello M. Ablation of acid ceramidase impairs autophagy and mitochondria activity in melanoma cells. Int. J. Mol. Sci. 2021;22(6):3247. doi 10.3390/ijms22063247

44. Lai Y.-J., Lin V.T.G., Zheng Y., Benveniste E.N., Lin F.-T. The adaptor protein TRIP6 antagonizes fas-induced apoptosis but promotes its effect on cell migration. Mol. Cell. Biol. 2010;30(23):5582-5596. doi 10.1128/MCB.00134-10

45. Lara-Velazquez M., Al-Kharboosh R., Jeanneret S., Vazquez-Ramos C., Mahato D., Tavanaiepour D., Rahmathulla G., Quinone-Hinojosa A. Advances in brain tumor surgery for glioblastoma in adults. Brain Sci. 2017;7(12):166. doi 10.3390/brainsci7120166

46. Larina I.M., Pastushkova L.K., Tiys E.S., Kireev K.S., Kononikhin A.S., Starodubtseva N.L., Popov I.A., Custaud M.A., Dobrokhotov I.V., Nikolaev E.N., Kolchanov N.A., Ivanisenko V.A. Permanent proteins in the urine of healthy humans during the Mars-500 experiment. J. Bioinform. Comput. Biol. 2015;13(1):1540001. doi 10.1142/S0219720015400016

47. Lee Y.S., Choi K.M., Choi M.H., Ji S.Y., Lee S., Sin D.M., Oh K.W., Lee Y.M., Hong J.T., Yun Y.P., Yoo H.S. Serine palmitoyltransferase inhibitor myriocin induces growth inhibition of B16F10 melanoma cells through G2/M phase arrest. Cell Prolif. 2011;44(4):320-329. doi 10.1111/j.1365-2184.2011.00761.x

48. Li K., Naviaux J.C., Bright A.T., Wang L., Naviaux R.K. A robust, single-injection method for targeted, broad-spectrum plasma metabolomics. Metabolomics. 2017;13(10):122. doi 10.1007/s11306-017-1264-1

49. Liberti M.V., Locasale J.W. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 2016;41(3):211-218. doi 10.1016/j.tibs.2015.12.001

50. Lin J., Lai X., Liu X., Yan H., Wu C. Pyroptosis in glioblastoma: a crucial regulator of the tumour immune microenvironment and a predictor of prognosis. J. Cell. Mol. Med. 2022;26(5):1579-1593. doi 10.1111/jcmm.17200

51. Lin M., Liao W., Dong M., Zhu R., Xiao J., Sun T., Chen Z., Wu B., Jin J. Exosomal neutral sphingomyelinase 1 suppresses hepatocellular carcinoma via decreasing the ratio of sphingomyelin/ceramide. FEBS J. 2018;285(20):3835-3848. doi 10.1111/febs.14635

52. Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., Von Deimling A., Ellison D.W. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncology. 2021;23(8):1231-1251. doi 10.1093/neuonc/noab106

53. Madigan J.P., Robey R.W., Poprawski J.E., Huang H., Clarke C.J., Gottesman M.M., Cabot M.C., Rosenberg D.W. A role for ceramide glycosylation in resistance to oxaliplatin in colorectal cancer. Exp. Cell Res. 2020;388(2):111860. doi 10.1016/j.yexcr.2020.111860

54. Mashimo T., Pichumani K., Vemireddy V., Hatanpaa K.J., Singh D.K., Sirasanagandla S., Nannepaga S., Piccirillo S.G., Kovacs Z., Foong C., Huang Z., Barnett S., Mickey B.E., Deberardinis R.J., Tu B.P., Maher E.A., Bachoo R.M. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014; 159(7):1603-1614. doi 10.1016/j.cell.2014.11.025

55. Maurer B.J., Metelitsa L.S., Seeger R.C., Cabot M.C., Reynolds C.P. Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines. J. Natl. Cancer Inst. 1999;91(13):1138-1146. doi 10.1093/jnci/91.13.1138

56. Melland-Smith M., Ermini L., Chauvin S., Craig-Barnes H., Tagliaferro A., Todros T., Post M., Caniggia I. Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia. Autophagy. 2015;11(4):653-669. doi 10.1080/15548627.2015.1034414

57. Moro K., Nagahashi M., Gabriel E., Takabe K., Wakai T. Clinical application of ceramide in cancer treatment. Breast Cancer. 2019;26(4): 407-415. doi 10.1007/s12282-019-00953-8

58. Naser E., Kadow S., Schumacher F., Mohamed Z.H., Kappe C., Hessler G., Pollmeier B., Kleuser B., Arenz C., Becker K.A., Gulbins E., Carpinteiro A. Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro. J. Lipid Res. 2020;61(6):896-910. doi 10.1194/jlr.RA120000682

59. Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer. 2018;18(1):33-50. doi 10.1038/nrc.2017.96

60. Oltra S.S., Colomo S., Sin L., Pérez-López M., Lázaro S., Molina-Crespo A., Choi K.H., Ros-Pardo D., Martínez L., Morales S., González-Paramos C., Orantes A., Soriano M., Hernández A., Lluch A., Rojo F., Albanell J., Gómez-Puertas P., Ko J.K., Sarrió D., Moreno-Bueno G. Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells. Cell Death Differ. 2023;30(5):1366-1381. doi 10.1038/s41418-023-01143-y

61. Omuro A., DeAngelis L.M. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842-1850. doi 10.1001/jama.2013.280319

62. Pandey R., Caflisch L., Lodi A., Brenner A.J., Tiziani S. Metabolomic signature of brain cancer. Mol. Carcinog. 2017;56(11):2355-2371. doi 10.1002/mc.22694

63. Pang Z., Chong J., Zhou G., de Lima Morais D.A., Chang L., Barrette M., Gauthier C., Jacques P.-É., Li S., Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49(W1):W388-W396. doi 10.1093/nar/gkab382

64. Pastushkova L.K., Kireev K.S., Kononikhin A.S., Tiys E.S., Popov I.A., Starodubtseva N.L., Dobrokhotov I.V., Ivanisenko V.A., Larina I.M., Kolchanov N.A., Nikolaev E.N. Detection of renal tissue and urinary tract proteins in the human urine after space flight. PLoS One. 2013;8(8):e71652. doi 10.1371/journal.pone.0071652

65. Pastushkova L.K., Kashirina D.N., Brzhozovskiy A.G., Kononikhin A.S., Tiys E.S., Ivanisenko V.A., Koloteva M.I., Nikolaev E.N., Larina I.M. Evaluation of cardiovascular system state by urine proteome after manned space flight. Acta Astronaut. 2019;160:594-600. doi 10.1016/j.actaastro.2019.02.015

66. Patrushev Y., Yudina Y., Sidelnikov V. Monolithic rod columns for HPLC based on divinylbenzene-styrene copolymer with 1-vinylimidazole and 4-vinylpyridine. J. Liq. Chromatogr. Relat. Technol. 2018;41(8):458-466. doi 10.1080/10826076.2018.1455149

67. Pike L.S., Smift A.L., Croteau N.J., Ferrick D.A., Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim. Biophys. Acta. 2011; 1807(6):726-734. doi 10.1016/j.bbabio.2010.10.022

68. Pizer E.S., Thupari J., Han W.F., Pinn M.L., Chrest F.J., Frehywot G.L., Townsend C.A., Kuhajda F.P. Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res. 2000;60(2):213-218

69. Poli M., Derosas M., Luscieti S., Cavadini P., Campanella A., Verardi R., Finazzi D., Arosio P. Pantothenate kinase-2 (Pank2) silencing causes cell growth reduction, cell-specific ferroportin upregulation and iron deregulation. Neurobiol. Dis. 2010;39(2):204-210. doi 10.1016/j.nbd.2010.04.009

70. Popik O.V., Petrovskiy E.D., Mishchenko E.L., Lavrik I.N., Ivanisenko V.A. Mosaic gene network modelling identified new regulatory mechanisms in HCV infection. Virus Res. 2016;218:71-78. doi 10.1016/j.virusres.2015.10.004

71. Poteet E., Choudhury G.R., Winters A., Li W., Ryou M.G., Liu R., Tang L., Ghorpade A., Wen Y., Yuan F., Keir S.T., Yan H., Bigner D.D., Simpkins J.W., Yang S.H. Reversing the Warburg effect as a treatment for glioblastoma. J. Biol. Chem. 2013;288(13):9153-9164. doi 10.1074/jbc.M112.440354

72. Prause K., Naseri G., Schumacher F., Kappe C., Kleuser B., Arenz C. A photocaged inhibitor of acid sphingomyelinase. Chem. Commun. 2020;56(94):14885-14888. doi 10.1039/d0cc06661c

73. Rao Z., Zhu Y., Yang P., Chen Z., Xia Y., Qiao C., Liu W., Deng H., Li J., Ning P., Wang Z. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022;12(9):4310-4329. doi 10.7150/thno.71086

74. Ren S., Babelova A., Moreth K., Xin C., Eberhardt W., Doller A., Pavenstädt H., Schaefer L., Pfeilschifter J., Huwiler A. Transforming growth factor-Β2 upregulates sphingosine kinase-1 activity, which in turn attenuates the fibrotic response to TGF-Β2 by impeding CTGF expression. Kidney Int. 2009;76(8):857-867. doi 10.1038/ki.2009.297

75. Riboni L., Campanella R., Bassi R., Villani R., Gaini S.M., Martinelli- Boneschi F., Viani P., Tettamanti G. Ceramide levels are inversely associated with malignant progression of human glial tumors. Glia. 2002;39(2):105-113. doi 10.1002/glia.10087

76. Rogachev A.D., Alemasov N.A., Ivanisenko V.A., Ivanisenko N.V., Gaisler E.V., Oleshko O.S., Cheresiz S.V., Mishinov S.V., Stupak V.V., Pokrovsky A.G. Correlation of metabolic profiles of plasma and cerebrospinal fluid of high-grade glioma patients. Metabolites. 2021;11(3):133. doi 10.3390/metabo11030133

77. Saik O.V., Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. Interactome of the hepatitis C virus: literature mining with ANDSystem. Virus Res. 2016;218:40-48. doi 10.1016/j.virusres.2015.12.003

78. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Dosenko V.E., Zolotareva O.I., Choynzonov E.L., Hofestaedt R., Ivanisenko V.A. Search for new candidate genes involved in the comorbidity of asthma and hypertension based on automatic analysis of scientific literature. J. Integr. Bioinform. 2018a;15(4):20180054. doi 10.1515/jib-2018-0054

79. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Goncharova I.A., Dosenko V.E., Zolotareva O.I., Hofestaedt R., Lavrik I.N., Rogaev E.I., Ivanisenko V.A. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med. Genomics. 2018b;11(Suppl.1): 15. doi 10.1186/s12920-018-0331-4

80. Saik O.V., Nimaev V.V., Usmonov D.B., Demenkov P.S., Ivanisenko T.V., Lavrik I.N., Ivanisenko V.A. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med. Genomics. 2019;12(Suppl. 2):47. doi 10.1186/s12920-019-0492-9

81. Sano O., Kazetani K.I., Adachi R., Kurasawa O., Kawamoto T., Iwata H. Using a biologically annotated library to analyze the anticancer mechanism of serine palmitoyl transferase (SPT) inhibitors. FEBS Open Bio. 2017;7(4):495-503. doi 10.1002/2211-5463.12196

82. Santos C.R., Schulze A. Lipid metabolism in cancer. FEBS J. 2012; 279(15):2610-2623. doi 10.1111/j.1742-4658.2012.08644.x

83. Schiffmann S., Hartmann D., Fuchs S., Birod K., Ferreirs N., Schreiber Y., Zivkovic A., Geisslinger G., Grösch S., Stark H. Inhibitors of specific ceramide synthases. Biochimie. 2012;94(2):558-565. doi 10.1016/j.biochi.2011.09.007

84. Siegal T. Clinical impact of molecular biomarkers in gliomas. J. Clin. Neurosci. 2015;22(3):437-444. doi 10.1016/j.jocn.2014.10.004

85. Signorelli P., Munoz-Olaya J.M., Gagliostro V., Casas J., Ghidoni R., Fabriàs G. Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett. 2009;282(2):238-243. doi 10.1016/j.canlet.2009.03.020

86. Steiner R., Saied E.M., Othman A., Arenz C., Maccarone A.T., Poad B.L.J., Blanksby S.J., Von Eckardstein A., Hornemann T. Elucidating the chemical structure of native 1-deoxysphingosine. J. Lipid Res. 2016;57(7):1194-1203. doi 10.1194/jlr.M067033

87. Tea M.N., Poonnoose S.I., Pitson S.M. Targeting the sphingolipid system as a therapeutic direction for glioblastoma. Cancers (Basel). 2020;12(1):111. doi 10.3390/cancers12010111

88. Turner N., Lim X.Y., Toop H.D., Osborne B., Brandon A.E., Taylor E.N., Fiveash C.E., Govindaraju H., Teo J.D., McEwen H.P., Couttas T.A., Butler S.M., Das A., Kowalski G.M., Bruce C.R., Hoehn K.L., Fath T., Schmitz-Peiffer C., Cooney G.J., Montgomery M.K., Morris J.C., Don A.S. A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nat. Commun. 2018;9(1):3165. doi 10.1038/s41467-018-05613-7

89. Vollmann-Zwerenz A., Leidgens V., Feliciello G., Klein C.A., Hau P. Tumor cell invasion in glioblastoma. Int. J. Mol. Sci. 2020;21(6): 1932. doi 10.3390/ijms21061932

90. Wang Y., Zhang C., Jin Y., Wang S., He Q., Liu Z., Ai Q., Lei Y., Li Y., Song F., Bu Y. Alkaline ceramidase 2 is a novel direct target of p53 and induces autophagy and apoptosis through ROS generation. Sci. Rep. 2017;7:44573. doi 10.1038/srep44573

91. Wang Z., Wen L., Zhu F., Wang Y., Xie Q., Chen Z., Li Y. Overexpression of ceramide synthase 1 increases C18-ceramide and leads to lethal autophagy in human glioma. Oncotarget. 2017;8(61):104022-104036. doi 10.18632/oncotarget.21955

92. Warburg O. On the origin of cancer cells. Science. 1956;123(3191): 309-314. doi 10.1126/science.123.3191.309

93. Wilfred B.R., Wang W.X., Nelson P.T. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol. Genet. Metab. 2007;91(3):209-217. doi 10.1016/j.ymgme.2007.03.011

94. Wolf A., Agnihotri S., Guha A. Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget. 2010;1(7):552-562. doi 10.18632/oncotarget.190

95. Xu R., Garcia-Barros M., Wen S., Li F., Lin C.L., Hannun Y.A., Obeid L.M., Mao C. Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2. Cell Death Differ. 2018;25(5):841-856. doi 10.1038/s41418-017-0018-y Youngblood M.W., Stupp R., Sonabend A.M. Role of resection in glioblastoma management. Neurosurg. Clin. N. Am. 2021;32(1):9-22. doi 10.1016/j.nec.2020.08.002

96. Yuan M., Breitkopf S.B., Yang X., Asara J.M. A positive/negative ion – switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012;7(5):872-881. doi 10.1038/nprot.2012.024

97. Zhang S., Huang P., Dai H., Li Q., Hu L., Peng J., Jiang S., Xu Y., Wu Z., Nie H., Zhang Z., Yin W., Zhang X., Lu J. TIMELESS regulates sphingolipid metabolism and tumor cell growth through Sp1/ACER2/S1P axis in ER-positive breast cancer. Cell Death Dis. 2020;11(10):892. doi 10.1038/s41419-020-03106-4

98. Zheng K., Chen Z., Feng H., Chen Y., Zhang C., Yu J., Luo Y., Zhao L., Jiang X., Shi F. Sphingomyelin synthase 2 promotes an aggressive breast cancer phenotype by disrupting the homoeostasis of ceramide and sphingomyelin. Cell Death Dis. 2019;10(3):157. doi 10.1038/s41419-019-1303-0

99. Zhou W., Wahl D.R. Metabolic abnormalities in glioblastoma and metabolic strategies to overcome treatment resistance. Cancers (Basel). 2019;11(9):1231. doi 10.3390/cancers11091231

100. Zolotareva O., Saik O.V., Königs C., Bragina E.Y., Goncharova I.A., Freidin M.B., Dosenko V.E., Ivanisenko V.A., Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci. Rep. 2019;9(1):16302. doi 10.1038/s41598-019-52762-w


Review

Views: 535


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)