Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Программный модуль для оценки метаболического потенциала мутантных штаммов бактерии Corynebacterium glutamicum

https://doi.org/10.18699/vjgb-24-97

Аннотация

Технологии производства различных соединений с применением микроорганизмов приобре­тают все большую популярность в промышленном производстве. Создание современных высокопродуктив­ных штаммов, метаболизм которых ориентирован на синтез конкретного целевого продукта, невозможно без комплексной направленной модификации генома c применением методов математического и компьютерно­го моделирования. Одним из видов бактерий, активно используемых в биотехнологическом производстве, является Corynebacterium glutamicum. Для него существует уже пять полногеномных потоковых моделей, ко­торые можно использовать для задач исследования и оптимизации метаболизма. В работе представлен про­граммный модуль развиваемого в Институте цитологии и генетики СО РАН инструмента FluxMicrobiotech, в рамках которого реализована серия вычислительных протоколов, предназначенных для массового компью­терного анализа потоковых моделей C. glutamicum на высокопроизводительных вычислительных компьюте­рах. Программный модуль реализован на языке Python с применением библиотек Pandas, cobraPy и Escher и настроен на работу по принципу «файл на вход/файл на выход». Модель, условия среды и ограничения моде­ли задаются как отдельные текстовые табличные файлы, что позволяет заготовить серию файлов для каждого из разделов, создавая базы доступных сценариев испытаний для вариаций модели. Или, наоборот, позволяет испытывать одну модель в серии разных условий культивирования. Настроены инструменты постобработки данных моделирования, обеспечивающие визуализацию сводных диаграмм и метаболических карт.

Об авторах

Ф. В. Казанцев
Курчатовский геномный центр ИЦиГ СО РАН; Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



М. Ф. Трофимова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Т. М. Хлебодарова
Курчатовский геномный центр ИЦиГ СО РАН; Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Ю. Г. Матушкин
Курчатовский геномный центр ИЦиГ СО РАН; Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



С. А. Лашин
Курчатовский геномный центр ИЦиГ СО РАН; Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия

Новосибирск



Список литературы

1. Ananda R., Daud K.M., Zainudin S. A review of advances in integrating gene regulatory networks and metabolic networks for designing strain optimization. J. King Saud Univ. Comput. Inf. Sci. 2024; 36(6):102120. doi 10.1016/j.jksuci.2024.102120

2. Barcelos M.C.S., Lupki F.B., Campolina G.A., Nelson D.L., Molina G. The colors of biotechnology: general overview and developments of white, green and blue areas. FEMS Microbiol. Lett. 2018;365(21): fny239. doi 10.1093/femsle/fny239

3. Feierabend M., Renz A., Zelle E., Nöh K., Wiechert W., Dräger A. High-quality genome-scale reconstruction of Corynebacterium glutamicum ATCC 13032. Front. Microbiol. 2021;12:750206. doi 10.3389/fmicb.2021.750206

4. Gu C., Kim G.B., Kim W.J., Kim H.U., Lee S.Y. Current status and applications of genome-scale metabolic models. Genome Biol. 2019; 20(1):121. doi 10.1186/s13059-019-1730-3

5. Herrmann H.A., Dyson B.C., Vass L., Johnson G.N., Schwartz J.-M. Flux sampling is a powerful tool to study metabolism under changing environmental conditions. NPJ Syst. Biol. Appl. 2019;5(1):32. doi 10.1038/s41540-019-0109-0

6. Jensen P.R., Michelsen O., Westerhoff H.V. Control analysis of the dependence of Escherichia coli physiology on the H+-ATPase. Proc. Natl. Acad. Sci. USA. 1993;90(17):8068-8072. doi 10.1073/pnas.90.17.8068

7. King Z.A., Dräger A., Ebrahim A., Sonnenschein N., Lewis N.E., Palsson B.O. Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput. Biol. 2015;11(8):e1004321. doi 10.1371/journal.pcbi.1004321

8. Kinoshita S., Udaka S., Shimono M. Studies on the amino acid fermentation. J. Gen. Appl. Microbiol. 1957;3(3):193-205. doi 10.2323/jgam.3.193

9. Kjeldsen K.R., Nielsen J. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol. Bioeng. 2009;102(2):583-597. doi 10.1002/bit.22067

10. Kulyashov M.A., Kolmykov S.K., Khlebodarova T.M., Akberdin I.R. State-of the-art constraint-based modeling of microbial metabolism: from basics to context-specific models with a focus on methanotrophs. Microorganisms. 2023;11(12):2987. doi 10.3390/microorganisms11122987

11. Machado D., Andrejev S., Tramontano M., Patil K.R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 2018;46(15):7542-7553. doi 10.1093/nar/gky537

12. Mao Z., Yuan Q., Li H., Zhang Y., Huang Y., Yang C., Wang R., Yang Y., Wu Y., Yang S., Liao X., Ma H. CAVE: a cloud-based platform for analysis and visualization of metabolic pathways. Nucleic Acids Res. 2023;51(W1):W70-W77. doi 10.1093/nar/gkad360

13. Mei J., Xu N., Ye C., Liu L., Wu J. Reconstruction and analysis of a genome-scale metabolic network of Corynebacterium glutamicum S9114. Gene. 2016;575(2):615-622. doi 10.1016/j.gene.2015.09.038

14. Mendoza S.N., Olivier B.G., Molenaar D., Teusink B. A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biol. 2019;20(1):158. doi 10.1186/s13059-019-1769-1

15. Niu J., Mao Z., Mao Y., Wu K., Shi Z., Yuan Q., Cai J., Ma H. Construction and analysis of an enzyme-constrained metabolic model of Corynebacterium glutamicum. Biomolecules. 2022;12(10):1499. doi 10.3390/biom12101499

16. Norsigian C.J., Pusarla N., McConn J.L., Yurkovich J.T., Dräger A., Palsson B.O., King Z. BiGG Models 2020: multi-strain genomescale models and expansion across the phylogenetic tree. Nucleic Acids Res. 2019;48(D1):D402-D406. doi 10.1093/nar/gkz1054

17. Sheremetieva M.E., Anufriev K.E., Khlebodarova T.M., Kolchanov N.A., Yanenko A.S. Rational metabolic engineering of Corynebacterium glutamicum to create a producer of L-valine. Vavilov J. Genet. Breed. 2023;26(8):743-757. doi 10.18699/VJGB-22-90

18. Sheremetieva M.E., Khlebodarova T.M., Derbikov D.D., Rozantseva V.V., Kolchanov N.A., Yanenko A.S. Systems metabolic engineering of Corynebacterium glutamicum to create a producer of L-valine. Biotekhnologiya = Biotechnology. 2024;40(3):3-23. doi 10.56304/S0234275824030025 (in Russian)

19. Tsuge Y., Matsuzawa H. Recent progress in production of amino acid‐derived chemicals using Corynebacterium glutamicum. World J. Microbiol. Biotechnol. 2021;37(3):49. doi 10.1007/s11274-021-03007-4

20. Wendisch V.F., Jorge J.M.P., Pérez-García F., Sgobba E. Updates on industrial production of amino acids using Corynebacterium glutamicum. World J. Microbiol. Biotechnol. 2016;32(6):105. doi 10.1007/s11274-016-2060-1

21. Zelle E., Nööh K., Wiechert W. Growth and production capabilities of Corynebacterium glutamicum: interrogating a genome-scale metabolic network model. In: Burkovski A. (Ed.) Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications. Caister Acad. Press, 2015;39-56. doi 10.21775/9781910190050.04

22. Zhang Yu, Cai J., Shang X., Wang B., Liu S., Chai X., Tan T., Zhang Yun, Wen T. A new genome-scale metabolic model of Corynebacterium glutamicum and its application. Biotechnol. Biofuels. 2017;10(1):169. doi 10.1186/s13068-017-0856-3


Рецензия

Просмотров: 152


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)