Пограничные клетки корневого чехлика как регулятор ризосферной микробиоты
https://doi.org/10.18699/vjgb-24-99
Аннотация
Ризосфера (почва, окружающая корни растения) – это экологическая ниша, внутри которой полезные микроорганизмы и патогены конкурируют друг с другом за органические углеродные соединения и возможность колонизации корней. Для взаимодействия с микробиотой корни выделяют в ризосферу ризодепозиты, к которым относят пограничные клетки, продукты гибели клеток корня и секретируемые живыми клетками жидкости (корневые экссудаты). Пограничные клетки, получившие свое название ввиду их локализации в почве рядом с корнем (на границе корня и почвы), представляют собой конечный этап дифференцировки клеток корневого чехлика. Слущивание пограничных клеток с поверхности корневого чехлика может происходить как одиночными клетками, так и рядами клеток. Пограничные клетки постоянно поставляются в почву на протяжении всей жизни растения, а тип и интенсивность слущивания пограничных клеток определяются как видом растений, так и почвенными условиями. В настоящее время появились данные о факторах, контролирующих тип слущивания, а также исследования этого процесса и его регуляции у разных видов растений. Пограничные клетки специализированы для взаимодействия с внешней средой, в частности, они служат живым барьером между корнем и почвенной микробиотой. После отделения от кончика корня в пограничных клетках снижается уровень первичного метаболизма и повышается число транскриптов генов вторичного метаболизма, усиливаются синтез компонентов и выделение слизи, содержащей вторичные метаболиты, внеклеточную ДНК, протеогликаны и другие вещества. Слизь, в которую пограничные клетки оказываются погруженными, служит как для привлечения микроорганизмов, способствующих росту растения, так и для защиты корня от патогенов. В настоящем обзоре описаны взаимодействия пограничных клеток с различными видами микроорганизмов и продемонстрирована их важность для роста растений и их устойчивости к болезням. Эти аспекты могут быть использованы в генной инженерии и селекции для усиления полезных функций пограничных клеток, что, в свою очередь, откроет новые горизонты для повышения урожайности и устойчивости сельскохозяйственных культур.
Ключевые слова
Об авторах
Н. А. ОмельянчукРоссия
Новосибирск
В. А. Черенко
Россия
Новосибирск
Е. В. Землянская
Россия
Новосибирск
Список литературы
1. Albersheim P., Darvill A., Roberts K., Sederoff R., Staehelin A. Plant Cell Walls. From Chemistry to Biology. New York: Garland Science, 2010
2. Arriola L., Niemira B.A., Safir G.R. Border cells and arbuscular mycorrhizae in four Amaranthaceae species. Phytopathology. 1997; 87(12):1240-1242. doi 10.1094/PHYTO.1997.87.12.1240
3. Atmodjo M.A., Hao Z., Mohnen D. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 2013;64:747-779. doi 10.1146/annurev-arplant-042811-105534
4. Beauregard P.B., Chai Y., Vlamakis H., Losick R., Kolter R. Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Natl. Acad. Sci. USA. 2013;110(17):1621-1630. doi 10.1073/pnas.1218984110
5. Benizri E., Nguyen C., Piutti S., Slezack-Deschaumes S., Philippot L. Additions of maize root mucilage to soil changed the structure of the bacterial community. Soil Biol. Biochem. 2007;39(5):1230-1233. doi 10.1016/j.soilbio.2006.12.026
6. Brigham L.A., Woo H.H., Nicoll S.M., Hawes M.C. Differential expression of proteins and mRNAs from border cells and root tips of pea. Plant Physiol. 1995;109(2):457-463. doi 10.1104/pp.109.2.457
7. Caffall K.H., Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 2009;344: 1879-1900. doi 10.1016/j.carres.2009.05.021
8. Canellas L.P., Olivares F.L. Production of border cells and colonization of maize root tips by Herbaspirillum seropedicae are modulated by humic acid. Plant Soil. 2017;417:403-413. doi 10.1007/s11104-017-3267-0
9. Cannesan M.A., Gangneux C., Lanoue A., Giron D., Laval K., Hawes M., Driouich A., Vicré-Gibouin M. Association between border cell responses and localized root infection by pathogenic Aphanomyces euteiches. Ann. Bot. 2011;108(3):459-469. doi 10.1093/aob/mcr177
10. Cannesan M.A., Durand C., Burel C., Gangneux C., Lerouge P., Ishii T., Laval K., Follet-Gueye M.L., Driouich A., Vicré-Gibouin M. Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germi nation. Plant Physiol. 2012;159(4):1658-1670. doi 10.1104/pp.112.198507
11. Carminati A., Vetterlein D. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources. Ann. Bot. 2013;112(2):277-290. doi 10.1093/aob/mcs262
12. Carreras A., Bernard S., Durambur G., Gügi B., Loutelier C., Pawlak B., Boulogne I., Vicré M., Driouich A., Goffner D., Follet-Gueye M.L. In vitro characterization of root extracellular trap and exudates of three Sahelian woody plant species. Planta. 2020;251(1):19. doi 10.1007/s00425-019-03302-3
13. Castilleux R., Plancot B., Ropitaux M., Carreras A., Leprince J., Boulogne I., Follet-Gueye M.L., Popper Z.A., Driouich A., Vicré M. Cell wall extensins in root – microbe interactions and root secretions. J. Exp. Bot. 2018;69(18):4235-4247. doi 10.1093/jxb/ery238
14. Chubatsu L.S., Monteiro R.A., de Souza E.M., de Oliveira M.A.S., Yates M.G., Wassem R., Bonatto A.C., Huergo L.F., Steffens M.B.R., Rigo L.U., Pedrosa F.D.O. Nitrogen fixation control in Herbaspirillum seropedicae. Plant Soil. 2012;356:197-207. doi 10.1007/s11104-011-0819-6
15. Darshan K., Singh J., Yadav S., Venugopala K.M., Aggarwal R. Root border cells: A pioneer’s of plant defence in rhizosphere. Indian J. Agric. Sci. 2020;90(10):1850-1855. doi 10.56093/ijas.v90i10.107884
16. Del Campillo E.D., Abdel-Aziz A., Crawford D., Patterson S.E. Root cap specific expression of an endo-β-1,4-D-glucanase (cellulase): a new marker to study root development in Arabidopsis. Plant Mol. Biol. 2004;56(2):309-323. doi 10.1007/s11103-004-3380-3
17. Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993;119(1):71-84. doi 10.1242/dev.119.1.71
18. Driouich A., Durand C., Vicre-Gibouin M. Formation and separation of root border cells. Trends Plant Sci. 2007;12:14-19. doi 10.1016/j.tplants.2006.11.003
19. Driouich A., Follet-Gueye M.L., Bernard S., Kousar S., Chevalier L., Vicré-Gibouin M., Lerouxel O. Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants. Front Plant Sci. 2012;3:79. doi 10.3389/fpls.2012.00079
20. Driouich A., Follet-Gueye M.L., Vicré-Gibouin M., Hawes M. Root border cells and secretions as critical elements in plant host defense. Curr. Opin. Plant Biol. 2013;16(4):489-495. doi 10.1016/j.pbi.2013.06.010
21. Driouich A., Smith C., Ropitaux M., Chambard M., Boulogne I., Bernard S., Follet-Gueye M.L., Vicré M., Moore J. Root extracellular traps versus neutrophil extracellular traps in host defence, a case of functional convergence? Biol. Rev. Camb. Philos. Soc. 2019;94(5): 1685-1700. doi 10.1111/brv.12522
22. Driouich A., Gaudry A., Pawlak B., Moore J.P. Root cap-derived cells and mucilage: a protective network at the root tip. Protoplasma. 2021;258(6):1179-1185. doi 10.1007/s00709-021-01660-y
23. Durand C., Vicré-Gibouin M., Follet-Gueye M.L., Duponchel L., Moreau M., Lerouge P., Driouich A. The organization pattern of root border-like cells of Arabidopsis is dependent on cell wall homogalacturonan. Plant Physiol. 2009;150(3):1411-1421. doi 10.1104/pp.109.136382
24. Endo I., Tange T., Osawa H. A cell-type-specific defect in border cell formation in the Acacia mangium root cap developing an extraordinary sheath of sloughed-off cells. Ann. Bot. 2011;108(2):279-290. doi 10.1093/aob/mcr139
25. Fendrych M., Hautegem T.V., Durme M.V., Olvera-Carrillo Y., Huysmans M., Karimi M., Lippens S., Guérin C.J., Krebs M., Schumacher K., Nowack M.K. Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Curr. Biol. 2014;24:931. doi 10.1016/j.cub.2014.03.025
26. Forino L.M.C., Castiglione M.R., Bartoli G., Balestri M., Andreucci A., Tagliasacchi A.M. Arsenic-induced morphogenic response in roots of arsenic hyperaccumulator fern Pteris vittata. J. Hazard. Mater. 2012;235-236:271-278. doi 10.1016/j.jhazmat.2012.07.051
27. Franco-Correa M., Quintana A., Duque C., Suarez C., Rodríguez M.X., Barea J.M. Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl. Soil Ecol. 2010;45(3):209-217. doi 10.1016/j.apsoil.2010.04.007
28. Gochnauer M.B., Sealey L.J., McCully M.E. Do detached root‐cap cells influence bacteria associated with maize roots? Plant Cell Environ. 1990;13(8):793-801. doi 10.1111/j.1365-3040.1990.tb01095.x
29. Goh T., Sakamoto K., Wang P., Kozono S., Ueno K., Miyashima S., Toyokura K., Fukaki H., Kang B.H., Nakajima K. Autophagy promotes organelle clearance and organized cell separation of living root-ap cells in Arabidopsis thaliana. Development. 2022;149(11): dev200593. doi 10.1242/dev.200593
30. Guinel F.C., McCully M.E. Some water‐related physical properties of maize root‐cap mucilage. Plant Cell Environ. 1986;9(8):657-666. doi 10.1111/J.1365-3040.1986.TB01624.X
31. Guinel F.C., McCully M.E. The cells shed by the root cap of Zea: their origin and some structural and physiological properties. Plant Cell Environ. 1987;10(7):565-578. doi 10.1111/1365-3040.EP11604101
32. Gunawardena U., Hawes M.C. Tissue specific localization of root infection by fungal pathogens: role of root border cells. Mol. Plant Microbe Interact. 2002;15(11):1128-1136. doi 10.1094/MPMI.2002.15.11.1128
33. Gunawardena U., Rodriguez M., Straney D., Romeo J.T., VanEtten H.D., Hawes M.C. Tissue-specific localization of pea root infection by Nectria haematococca. Mechanisms and consequences. Plant Physiol. 2005;137(4):1363-1374. doi 10.1104/pp.104.056366
34. Hasan A., Tabassum B., Hashim M., Khan N. Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria. 2024;3(2):59-75. doi 10.20944/preprints202310.1504.v1
35. Hawes M., Allen C., Turgeon B.G., Curlango-Rivera G., Minh Tran T., Huskey D.A., Xiong Z. Root border cells and their role in plant defense. Annu. Rev. Phytopathol. 2016;54:143-161. doi 10.1146/annurev-phyto-080615-100140
36. Hawes M.C., Lin H.J. Correlation of pectolytic enzyme activity with the programmed release of cells from root caps of pea (Pisum sativum). Plant Physiol. 1990;94(4):1855-1859. doi 10.1104/pp.94.4.1855
37. Hawes M.C., Brigham L.A., Wen F., Woo H.H., Zhu Y. Function of root border cells in plant health: Pioneers in the rhizosphere. Annu. Rev. Phytopathol. 1998;36:311-327. doi 10.1146/annurev.phyto.36.1.311
38. Hawes M.C., Gunawardena U., Miyasaka S., Zhao X. The role of root border cells in plant defense. Trends Plant Sci. 2000;5(3):128-133. doi 10.1016/s1360-1385(00)01556-9
39. Hawes M.C., Bengough G., Cassab G., Ponce G. Root caps and rhizosphere. J. Plant Growth Regul. 2003;21:352-367. doi 10.1007/s00344-002-0035-y
40. Hawes M.C., Curlango-Rivera G., Wen F., White G.J., VanEtten H.D., Xiong Z. Extracellular DNA: the tip of root defenses? Plant Sci. 2011;180(6):741-745. doi 10.1016/j.plantsci.2011.02.007
41. Iijima M., Barlow P.W., Bengough A.G. Root cap structure and cell production rates of maize (Zea mays) roots in compacted sand. New Phytol. 2003;160(1):127-134. doi 10.1046/j.1469-8137.2003.00860.x
42. Jaroszuk-Ściseł J., Kurek E., Rodzik B., Winiarczyk K. Interactions between rye (Secale cereale) root border cells (RBCs) and pathogenic and nonpathogenic rhizosphere strains of Fusarium culmorum. Mycol. Res. 2009;113(10):1053-1061. doi 10.1016/j.mycres.2009.07.001
43. Jaroszuk-Ściseł J., Tyśkiewicz R., Nowak A., Ozimek E., Majewska M., Hanaka A., Tyśkiewicz K., Pawlik A., Janusz G. Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Int. J. Mol. Sci. 2019;20(19):4923. doi 10.3390/ijms20194923
44. Karve R., Suárez-Román F., Iyer-Pascuzzi A.S. The transcription factor NIN-LIKE PROTEIN7 controls border-like cell release. Plant Physiol. 2016;171(3):2101-2111. doi 10.1104/pp.16.00453
45. Khaliq A., Perveen S., Alamer K.H., Zia Ul Haq M., Rafique Z., Alsudays I.M., Althobaiti A.T., Saleh M.A., Hussain S., Attia H. Arbuscular mycorrhizal fungi symbiosis to enhance plant – soil interaction. Sustainability. 2022;14(13):7840. doi 10.3390/su14137840
46. Knee E.M., Gong F.C., Gao M., Teplitski M., Jones A.R., Foxworthy A., Mort A.J., Bauer W.D. Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol. Plant Microbe Interact. 2001;14(6):775-784. doi 10.1094/MPMI.2001.14.6.775
47. Koroney A.S., Plasson C., Pawlak B., Sidikou R., Driouich A., Menu- Bouaouiche L., Vicré-Gibouin M. Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum. Ann. Bot. 2016;118(4): 797-808. doi 10.1093/aob/mcw128
48. Lee J.Y., Hwang B.K. Diversity of antifungal actinomycetes in various vegetative soils of Korea. Can. J. Microbiol. 2002;48(5):407-417. doi 10.1139/w02-025
49. Lilley C.J., Wang D., Atkinson H.J., Urwin P.E. Effective delivery of a nematode‐repellent peptide using a root‐cap‐specific promoter. Plant Biotechnol. J. 2011;9(2):151-161. doi 10.1111/j.1467-7652. 2010.00542.x
50. Ma W., Muthreich N., Liao C., Franz-Wachtel M., Schütz W., Zhang F., Hochholdinger F., Li C. The mucilage proteome of maize (Zea mays L.) primary roots. J. Proteome Res. 2010;9(6):2968-2976. doi 10.1021/pr901168v
51. Maeda K., Kunieda T., Tamura K., Hatano K., Hara-Nishimura I., Shimada T. Identification of periplasmic root-cap mucilage in developing columella cells of Arabidopsis thaliana. Plant Cell Physiol. 2019;60(6):1296-1303. doi 10.1093/pcp/pcz047
52. Mendes R., Garbeva P., Raaijmakers J.M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013;37(5):634-663. doi 10.1111/1574-6976.12028
53. Micheli F. Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 2001;6(9):414-419. doi 10.1016/s1360-1385(01)02045-3
54. Mohanram S., Kumar P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. Ann. Microbiol. 2019;69(3): 307-320. doi 10.1007/s13213-019-01448-9
55. Monticolo F., Palomba E., Termolino P., Chiaiese P., De Alteriis E., Mazzoleni S., Chiusano M.L. The role of DNA in the extracellular environment: a focus on NETs, RETs and biofilms. Front. Plant Sci. 2020;11:589837. doi 10.3389/fpls.2020.589837
56. Moustacas A.M., Nari J., Borel M., Noat G., Ricard J. Pectin methylesterase, metal ions and plant cell-wall extension. The role of metal ions in plant cell-wall extension. Biochem. J. 1991;279(2):351-354. doi 10.1042/bj2790343
57. Nagahashi G., Douds D.D. Isolated root caps, border cells, and mucilage from host roots stimulate hyphal branching of the arbuscular mycorrhizal fungus, Gigaspora gigantea. Mycol. Res. 2004;108(9): 1079-1088. doi 10.1017/s0953756204000693
58. Niemira B.A., Safir G.R., Hawes M.C. Arbuscular mycorrhizal colonization and border cell production: a possible correlation. Phytopathology. 1996;86(6):563-565
59. Odell R.E., Dumlao M.R., Samar D., Silk W.K. Stage‐dependent border cell and carbon flow from roots to rhizosphere. Am. J. Bot. 2008; 95(4):441-446. doi 10.3732/ajb.95.4.441
60. Pankievicz V.C.S., Delaux P.M., Infante V., Hirsch H.H., Rajasekar S., Zamora P., Jayaraman D., Calderon C.I., Bennett A., Ané J.M. Nitrogen fixation and mucilage production on maize aerial roots is controlled by aerial root development and border cell functions. Front. Plant Sci. 2022;13:977056. doi 10.3389/fpls.2022.977056
61. Plancot B., Santaella C., Jaber R., Kiefer-Meyer M.C., Follet-Gueye M.L., Leprince J., Gattin I., Souc C., Driouich A., Vicré-Gibouin M. Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors. Plant Physiol. 2013;163(4):1584-1597. doi 10.1104/pp.113.222356
62. Poulsen L.R., López-Marqués R.L., McDowell S.C., Okkeri J., Licht D., Schulz A., Pomorski T., Harper J.F., Palmgren M.G. The Arabidopsis P4-ATPase ALA3 localizes to the Golgi and requires a β-subunit to function in lipid translocation and secretory vesicle formation. Plant Cell. 2008;20(3):658-676. doi 10.1105/tpc.107.054767
63. Ropitaux M., Bernard S., Follet-Gueye M.L., Vicré M., Boulogne I., Driouich A. Xyloglucan and cellulose form molecular crossbridges connecting root border cells in pea (Pisum sativum). Plant Physiol. Biochem. 2019;139:191-196. doi 10.1016/j.plaphy.2019.03.023
64. Ropitaux M., Bernard S., Schapman D., Follet-Gueye M.L., Vicré M., Boulogne I., Driouich A. Root border cells and mucilage secretions of soybean, Glycine max (Merr) L.: characterization and role in interactions with the oomycete Phytophthora parasitica. Cells. 2020;9(10):2215. doi 10.3390/cells9102215
65. Shi C.-L., von Wangenheim D., Herrmann U., Wildhagen M., Kulik I., Kopf A., Ishida T., Olsson V., Anker M.K., Albert M., Butenko M.A., Felix G., Sawa S., Claassen M., Friml J., Aalen R.B. The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nat. Plants. 2018;4(8):596-604. doi 10.1038/s41477-018-0212-z
66. Shirakawa M., Matsushita N., Fukuda K. Visualization of root extracellular traps in an ectomycorrhizal woody plant (Pinus densiflora) and their interactions with root-associated bacteria. Planta. 2023; 258(6):112. doi 10.1007/s00425-023-04274-1
67. Tran T.M., MacIntyre A., Hawes M., Allen C. Escaping underground nets: extracellular DNases degrade plant extracellular traps and contribute to virulence of the plant pathogenic bacterium Ralstonia solanacearum. PLoS Pathog. 2016;12(6):e1005686. doi 10.1371/journal.ppat.1005686
68. Ulloa-Ogaz A.L., Muñoz-Castellanos L.N., Nevárez-Moorillón G.V. Biocontrol of phytopathogens: Antibiotic production as mechanism of control. In: Méndez-Vilas A. (Ed.). The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs. Formatex, 2015;305-309
69. Vermeer J., McCully M.E. The rhizosphere in Zea: New insight into its structure and development. Planta. 1982;156:45-61. doi 10.1007/BF00393442
70. Vicré M., Santaella C., Blanchet S., Gateau A., Driouich A. Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol. 2005;138: 998-1008. doi 10.1104/pp.104.051813
71. Wang P., Chen X., Goldbeck C., Chung E., Kang B.H. A distinct class of vesicles derived from the trans‐Golgi mediates secretion of xylogalacturonan in the root border cell. Plant J. 2017;92(4):596-610. doi 10.1111/tpj.13704
72. Watson B.S., Bedair M.F., Urbanczyk-Wochniak E., Huhman D.V., Yang D.S., Allen S.N., Li W., Tang Y., Sumner L.W. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells. Plant Physiol. 2015;167(4):1699-1716. doi 10.1104/pp.114.253054
73. Weiller F., Moore J.P., Young P., Driouich A., Vivier M.A. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides. Ann. Bot. 2017;119(5):803-813. doi 10.1093/aob/mcw141
74. Wen F., Zhu Y., Hawes M.C. Effect of pectin methylesterase gene expression on pea root development. Plant Cell. 1999;11(6):1129-1140. doi 10.1105/tpc.11.6.1129
75. Wen F., VanEtten H.D., Tsaprailis G., Hawes M.C. Extracellular proteins in pea root tip and border cell exudates. Plant Physiol. 2007; 143(2):773-783. doi 10.1104/pp.106.091637
76. Wen F., White G.J., VanEtten H.D., Xiong Z., Hawes M.C. Extracellular DNA is required for root tip resistance to fungal infection. Plant Physiol. 2009;151(2):820-829. doi 10.1104/pp.109.142067
77. Wen F., Curlango-Rivera G., Huskey D.C., Xiong Z., Hawes M.C. Visualization of extracellular DNA released during border cell separation from the root cap. Am. J. Bot. 2017;104(7):970-978. doi 10.3732/ajb.1700142
78. Wuyts N., Maung Z.T.Z., Swennen R., De Waele D. Banana rhizodeposition: characterization of root border cell production and effects on chemotaxis and motility of the parasitic nematode Radopholus similis. Plant Soil. 2006;283:217-228. doi 10.1007/s11104-006-0013-4
79. Zhao X., Misaghi I.J., Hawes M.C. Stimulation of border cell production in response to increased carbon dioxide levels. Plant Physiol. 2000;122:181-186. doi 10.1104/pp.122.1.181