Метод генных сетей и метаболомный анализ позволили выявить специфические пути изменения профиля аминокислот и ацилкарнитинов в плазме крови при болезни Паркинсона и сосудистом паркинсонизме








https://doi.org/10.18699/vjgb-24-100
Аннотация
Болезнь Паркинсона (БП) и сосудистый паркинсонизм (СП) характеризуются схожими неврологическими синдромами, но различаются патогенезом, морфологией и терапевтическими подходами. Их молекулярногенетические механизмы многофакторны и задействуют множество биологических процессов. Для комплексного анализа патофизиологии этих заболеваний необходимо применение методов системной биологии и реконструкции генных сетей. В данном исследовании проведен метаболомный скрининг аминокислот и ацилкарнитинов в плазме крови трех групп испытуемых: пациентов с БП, пациентов с СП и контрольной группы. Сравнительный статистический анализ метаболомных профилей групп пациентов по сравнению с контролем определил значимо измененные уровни метаболитов при болезни Паркинсона и при сосудистом паркинсонизме. Для выявления потенциальных механизмов нарушения метаболизма аминокислот и ацилкарнитинов при БП и СП были реконструированы регуляторные генные сети с помощью когнитивной системы ANDSystem. Пути регуляции ферментов метаболизма значимых метаболитов были найдены для трех групп генетических маркеров: специфических для БП, специфических для СП, а также группы общих маркеров двух заболеваний. Сравнительный анализ молекулярногенетических путей в генных сетях позволил выявить как специфические, так и общие для БП и СП молекулярные механизмы, ассоциированные с изменением метаболомного профиля. Обнаружены регуляторные пути, функция которых потенциально нарушена при этих патологиях. Специфическими для генетических маркеров БП оказались пути регуляции ферментов ALDH2, BCAT1, AL1B1 и UD11, а для генетических маркеров СП – пути регуляции ферментов OCTC, FURIN и S22A6. Регуляторные пути к ферментам BCAT2, ODPB и P4HA1 были связаны с общими для обоих заболеваний генетическими маркерами. Полученные результаты углубляют понимание патологических процессов при БП и СП и могут быть использованы для применения диагностических систем на основе оценки метаболомного профиля аминокислот и ацилкарнитинов в плазме крови пациентов с болезнью Паркинсона и сосудистым паркинсонизмом.
Об авторах
А. А. МакароваРоссия
Новосибирск
П. М. Мельникова
Россия
Новосибирск
А. Д. Рогачев
Россия
Новосибирск
П С. Деменков
Россия
Новосибирск
Т. В. Иванисенко
Россия
Новосибирск
Е. В. Предтеченская
Россия
Новосибирск
С. Ю. Карманов
Россия
Новосибирск
В. В. Коваль
Россия
Новосибирск
А. Г. Покровский
Россия
Новосибирск
И. Н. Лаврик
Россия
Новосибирск
Н. А. Колчанов
Россия
Новосибирск
В. А. Иванисенко
Россия
Новосибирск
Список литературы
1. Alexander G.E. Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin. Neurosci. 2004;6(3):259-280. https://doi.org/10.31887/DCNS.2004.6.3/galexander
2. Ashby E.L., Kierzkowska M., Hull J., Kehoe P.G., Hutson S.M., Conway M.E. Altered expression of human mitochondrial branched chain aminotransferase in dementia with Lewy bodies and vascular dementia. Neurochem. Res. 2017;42(1):306-319. https://doi.org/10.1007/s11064-016-1855-7
3. Binder H., Wirth H., Arakelyan A., Lembcke K., Tiys E.S., Ivanisenko V.A., Kolchanov N.A., Kononikhin A., Popov I., Nikolaev E.N., Pastushkova L.K., Larina I.M. Time-course human urine proteomics in space-flight simulation experiments. BMC Genomics. 2014; 15(S12):S2. https://doi.org/10.1186/1471-2164-15-S12-S2
4. Børglum A.D., Flint T., Hansen L.L., Kruse T.A. Refined localization of the pyruvate dehydrogenase E1α gene (PDHA1) by linkage analysis. Hum. Genet. 1996;99(1):80-82. https://doi.org/10.1007/s004390050315
5. Braak H., Tredici K.D., Rüb U., De Vos R.A.I., Jansen Steur E.N.H., Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging. 2003;24(2):197-211. https://doi.org/10.1016/S0197-4580(02)00065-9
6. Bragina E.Yu., Tiys E.S., Freidin M.B., Koneva L.A., Demenkov P.S., Ivanisenko V.A., Kolchanov N.A., Puzyrev V.P. Insights into pathophysiology of dystropy through the analysis of gene networks: an example of bronchial asthma and tuberculosis. Immunogenetics. 2014;66(7-8):457-465. https://doi.org/10.1007/s00251-014-0786-1
7. Bragina E.Yu., Tiys E.S., Rudko A.A., Ivanisenko V.A., Freidin M.B. Novel tuberculosis susceptibility candidate genes revealed by the reconstruction and analysis of associative networks. Infect. Genet. Evol. 2016;46:118-123. https://doi.org/10.1016/j.meegid.2016.10.030
8. Bragina E.Yu., Gomboeva D.E., Saik O.V., Ivanisenko V.A., Freidin M.B., Nazarenko M.S., Puzyrev V.P. Apoptosis genes as a key to identification of inverse comorbidity of Huntington’s disease and cancer. Int. J. Mol. Sci. 2023;24(11):9385. https://doi.org/10.3390/ijms24119385
9. Che Mohd Nassir C.M.N., Damodaran T., Yusof S.R., Norazit A., Chilla G., Huen I., Kn B.P., Mohamed Ibrahim N., Mustapha M. Aberrant neurogliovascular unit dynamics in cerebral small vessel disease: a rheological clue to vascular Parkinsonism. Pharmaceutics. 2021;13(8):1207. https://doi.org/10.3390/pharmaceutics13081207
10. Chen C.-H., Joshi A.U., Mochly-Rosen D. The role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in neuropathology and neurodegeneration. Acta Neurol. Taiwan. 2016;25(4)(4):111-123
11. Chen Y., Liu Q., Liu J., Wei P., Li B., Wang N., Liu Z., Wang Z. Revealing the modular similarities and differences among Alzheimer’s disease, vascular dementia, and Parkinson’s disease in genomic networks. Neuromol. Med. 2022;24(2):125-138. https://doi.org/10.1007/s12017-021-08670-2
12. Chen Y.-F., Tseng Y.-L., Lan M.-Y., Lai S.-L., Su C.-S., Liu J.-S., Chang Y.-Y. The relationship of leukoaraiosis and the clinical severity of vascular Parkinsonism. J. Neurol. Sci. 2014;346(1-2):255-259. https://doi.org/10.1016/j.jns.2014.09.002
13. Chiu C.-C., Yeh T.-H., Lai S.-C., Wu-Chou Y.-H., Chen C.-H., Mochly-Rosen D., Huang Y.-C., Chen Y.-J., Chen C.-L., Chang Y.-M., Wang H.-L., Lu C.-S. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism. Exp. Neurol. 2015;263:244-253. https://doi.org/10.1016/j.expneurol.2014.09.016
14. Dalangin R., Kim A., Campbell R.E. The role of amino acids in neurotransmission and fluorescent tools for their detection. Int. J. Mol. Sci. 2020;21(17):6197. https://doi.org/10.3390/ijms21176197
15. De Holanda Paranhos L., Magalhães R.S.S., De Araújo Brasil A., Neto J.R.M., Ribeiro G.D., Queiroz D.D., Dos Santos V.M., Eleutherio E.C.A. The familial amyotrophic lateral sclerosis-associated A4V SOD1 mutant is not able to regulate aerobic glycolysis. Biochim. Biophys. Acta Gen. Subjt. 2024;1868(8):130634. https://doi.org/10.1016/j.bbagen.2024.130634
16. Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. ANDVisio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In Silico Biol. 2012;11(3-4):149-161. https://doi.org/10.3233/ISB-2012-0449
17. Dimas P., Montani L., Pereira J.A., Moreno D., Trötzmüller M., Gerber J., Semenkovich C.F., Köfeler H.C., Suter U. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. eLife. 2019;8:e44702. https://doi.org/10.7554/eLife.44702
18. Ferrari M., Martignoni E., Blandini F., Riboldazzi G., Bono G., Marino F., Cosentino M. Association of UDP-glucuronosyltransferase 1A9 polymorphisms with adverse reactions to catechol-O-methyltransferase inhibitors in Parkinson’s disease patients. Eur. J. Clin. Pharmacol. 2012;68(11):1493-1499. https://doi.org/10.1007/s00228-012-1281-y
19. George G., Singh S., Lokappa S.B., Varkey J. Gene co-expression network analysis for identifying genetic markers in Parkinson’s disease - a three-way comparative approach. Genomics. 2019a;111(4): 819-830. https://doi.org/10.1016/j.ygeno.2018.05.005
20. George G., Valiya Parambath S., Lokappa S.B., Varkey J. Construction of Parkinson’s disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes. Gene. 2019b;697:67-77. https://doi.org/10.1016/j.gene.2019.02.026
21. Grassi D., Howard S., Zhou M., Diaz-Perez N., Urban N.T., Guerrero-Given D., Kamasawa N., Volpicelli-Daley L.A., LoGrasso P., Lasmézas C.I. Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2018;115(11):E2634-E2643. https://doi.org/10.1073/pnas.1713849115
22. Grünblatt E., Riederer P. Aldehyde dehydrogenase (ALDH) in Alzheimer’s and Parkinson’s disease. J. Neural. Transm. 2016;123(2): 83-90. https://doi.org/10.1007/s00702-014-1320-1
23. Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(S11):228. https://doi.org/10.1186/s12859-020-03557-8
24. Ivanisenko T.V., Demenkov P.S., Kolchanov N.A., Ivanisenko V.A. The new version of the ANDDigest tool with improved ai-based short names recognition. Int. J. Mol. Sci. 2022;23(23):14934. https://doi.org/10.3390/ijms232314934
25. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl.2):S2. https://doi.org/10.1186/1752-0509-9-S2-S2
26. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019; 20(S1):34. https://doi.org/10.1186/s12859-018-2567-6
27. Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Yu.I., Voevoda S.M., Karpenko T.N., Velichko A.J., Voevoda M.I., Kolchanov N.A., Pokrovsky A.G. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12(1):19977. https://doi.org/10.1038/s41598-022-24170-0
28. Ivanisenko V.A., Basov N.V., Makarova A.A., Venzel A.S., Rogachev A.D., Demenkov P.S., Ivanisenko T.V., Kleshchev M.A., Gaisler E.V., Moroz G.B., Plesko V.V., Sotnikova Y.S., Patrushev Y.V., Lomivorotov V.V., Kolchanov N.A., Pokrovsky A.G. Gene networks for use in metabolomic data analysis of blood plasma from patients with postoperative delirium. Vavilov J. Genet. Breed. 2023;27(7): 768-775. https://doi.org/10.18699/VJGB-23-89
29. Jones L.L., McDonald D.A., Borum P.R. Acylcarnitines: role in brain. Prog. Lipid Res. 2010;49(1):61-75. https://doi.org/10.1016/j.plipres.2009.08.004
30. Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. https://doi.org/10.1093/nar/28.1.27
31. Kasakin M.F., Rogachev A.D., Predtechenskaya E.V., Zaigraev V.J., Koval V.V., Pokrovsky A.G. Targeted metabolomics approach for identification of relapsing-remitting multiple sclerosis markers and evaluation of diagnostic models. Med. Chem. Commun. 2019;10(10): 1803-1809. https://doi.org/10.1039/c9md00253g
32. Korczyn A.D. Vascular Parkinsonism - characteristics, pathogenesis and treatment. Nat. Rev. Neurol. 2015;11(6):319-326. https://doi.org/10.1038/nrneurol.2015.61
33. Larina I.M., Pastushkova L.Kh., Tiys E.S., Kireev K.S., Kononikhin A.S., Starodubtseva N.L., Popov I.A., Custaud M.-A., Dobrokhotov I.V., Nikolaev E.N., Kolchanov N.A., Ivanisenko V.A. Permanent proteins in the urine of healthy humans during the Mars-500 experiment. J. Bioinform. Comput. Biol. 2015;13(01):1540001. https://doi.org/10.1142/S0219720015400016
34. Levin O.S., Bogolepova A.N., Lobzin V.Yu. General mechanisms of the pathogenesis of neurodenerative and cerebrovascular diseases and the possibilities of their correction. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5):11-16. https://doi.org/10.17116/jnevro202212205111 (in Russian)
35. Lin L., Tao J.-P., Li M., Peng J., Zhou C., Ouyang J., Si Y.-Y. Mechanism of ALDH2 improves the neuronal damage caused by hypoxia/reoxygenation. Eur. Rev. Med. Pharmacol. Sci. 2022;26(8):2712-2720. https://doi.org/10.26355/eurrev_202204_28601
36. Maksoud E., Liao E.H., Haghighi A.P. A neuron-glial trans-signaling cascade mediates LRRK2-induced neurodegeneration. Cell Rep. 2019;26(7):1774-1786.e4. https://doi.org/10.1016/j.celrep.2019.01.077
37. Mercatelli D., Scalambra L., Triboli L., Ray F., Giorgi F.M. Gene regulatory network inference resources: a practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863(6):194430. https://doi.org/10.1016/j.bbagrm.2019.194430
38. Michel T.M., Käsbauer L., Gsell W., Jecel J., Sheldrick A.J., Cortese M., Nickl-Jockschat T., Grünblatt E., Riederer P. Aldehyde dehydrogenase 2 in sporadic Parkinson’s disease. Parkinsonism Relat. Disord. 2014;20:S68-S72. https://doi.org/10.1016/S1353-8020(13)70018-X
39. Miki Y., Tanji K., Mori F., Kakita A., Takahashi H., Wakabayashi K. Alteration of mitochondrial protein PDHA1 in Lewy body disease and PARK14. Biochem. Biophys. Res. Commun. 2017;489(4):439-444. https://doi.org/10.1016/j.bbrc.2017.05.162
40. Mor D.E., Sohrabi S., Kaletsky R., Keyes W., Tartici A., Kalia V., Miller G.W., Murphy C.T. Metformin rescues Parkinson’s disease phenotypes caused by hyperactive mitochondria. Proc. Natl. Acad. Sci. USA. 2020;117(42):26438-26447. https://doi.org/10.1073/pnas.2009838117
41. Nalls M.A., Pankratz N., Lill C.M., Do C.B., Hernandez D.G., Saad M., DeStefano A.L., Kara E., Bras J., Sharma M., … Brice A., Scott W.K., Gasser T., Bertram L., Eriksson N., Foroud T., Singleton A.B. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014; 46(9):989-993. https://doi.org/10.1038/ng.3043
42. Narasimhan M., Schwartz R., Halliday G. Parkinsonism and cerebrovascular disease. J. Neurol. Sci. 2022;433:120011. https://doi.org/10.1016/j.jns.2021.120011
43. Narendra D.P., Jin S.M., Tanaka A., Suen D.-F., Gautier C.A., Shen J., Cookson M.R., Youle R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1):e1000298. https://doi.org/10.1371/journal.pbio.1000298
44. Odongo R., Bellur O., Abdik E., Çakır T. Brain-wide transcriptomebased metabolic alterations in Parkinson’s disease: human inter-region and human-experimental model correlations. Mol. Omics. 2023; 19(7):522-537. https://doi.org/10.1039/D2MO00343K
45. Okui T., Iwashita M., Rogers M.A., Halu A., Atkins S.K., Kuraoka S., Abdelhamid I., Higashi H., Ramsaroop A., Aikawa M., Singh S.A., Aikawa E. CROT (Carnitine O-Octanoyltransferase) is a novel contributing factor in vascular calcification via promoting fatty acid metabolism and mitochondrial dysfunction. Arterioscler. Thromb. Vasc. Biol. 2021;41(2):755-768. https://doi.org/10.1161/ATVBAHA.120.315007
46. Ostrakhovitch E.A., Song E.-S., Macedo J.K.A., Gentry M.S., Quintero J.E., Van Horne C., Yamasaki T.R. Analysis of circulating metabolites to differentiate Parkinson’s disease and essential tremor. Neurosci. Lett. 2022;769:136428. doi10.1016/j.neulet.2021.136428
47. Pastushkova L.Kh., Kireev K.S., Kononikhin A.S., Tiys E.S., Popov I.A., Starodubtseva N.L., Dobrokhotov I.V., Ivanisenko V.A., Larina I.M., Kolchanov N.A., Nikolaev E.N. Detection of renal tissue and urinary tract proteins in the human urine after space flight. PLoS One. 2013;8(8):e71652. https://doi.org/10.1371/journal.pone.0071652
48. Pastushkova L.Kh., Kashirina D.N., Brzhozovskiy A.G., Kononikhin A.S., Tiys E.S., Ivanisenko V.A., Koloteva M.I., Nikolaev E.N., Larina I.M. Evaluation of cardiovascular system state by urine proteome after manned space flight. Acta Astronaut. 2019;160:594-600. https://doi.org/10.1016/j.actaastro.2019.02.015
49. Pavlú-Pereira H., Florindo C., Carvalho F., Tavares De Almeida I., Vicente J., Morais V., Rivera I. Evaluation of mitochondrial function on pyruvate dehydrogenase complex deficient patient-derived cell lines. Endocr. Metab. Immune Disord. Drug Targets. 2024;24(16):20. https://doi.org/10.2174/0118715303280072231004082458
50. Penney J., Tsurudome K., Liao E.H., Kauwe G., Gray L., Yanagiya A., Calderon M.R., Sonenberg N., Haghighi A.P. LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction. Nat. Commun. 2016;7(1):12188. https://doi.org/10.1038/ncomms12188
51. Rappaport N., Twik M., Nativ N., Stelzer G., Bahir I., Stein T.I., Safran M., Lancet D. MalaCards: a comprehensive automaticallymined database of human diseases. Curr. Protoc. Bioinformatics. 2014;47(1):1.24.1-19. https://doi.org/10.1002/0471250953.bi0124s47
52. Rocha E.M., De Miranda B., Sanders L.H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol. Dis. 2018;109:249-257. https://doi.org/10.1016/j.nbd.2017.04.004
53. Rogachev A.D., Alemasov N.A., Ivanisenko V.A., Ivanisenko N.V., Gaisler E.V., Oleshko O.S., Cheresiz S.V., Mishinov S.V., Stupak V.V., Pokrovsky A.G. Correlation of metabolic profiles of plasma and cerebrospinal fluid of high-grade glioma patients. Metabolites. 2021;11(3):133. https://doi.org/10.3390/metabo11030133
54. Saik O.V., Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. Interactome of the hepatitis C virus: literature mining with ANDSystem. Virus Res. 2016;218:40-48. https://doi.org/10.1016/j.virusres.2015.12.003
55. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Yu., Freidin M.B., Dosenko V.E., Zolotareva O.I., Choynzonov E.L., Hofestaedt R., Ivanisenko V.A. Search for new candidate genes involved in the comorbidity of asthma and hypertension based on automatic analysis of scientific literature. J. Integr. Bioinform. 2018; 15(4):20180054. https://doi.org/10.1515/jib-2018-0054
56. Saik O.V., Nimaev V.V., Usmonov D.B., Demenkov P.S., Ivanisenko T.V., Lavrik I.N., Ivanisenko V.A. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med. Genomics. 2019;12(S2):47. https://doi.org/10.1186/s12920-019-0492-9
57. Saiki S., Hatano T., Fujimaki M., Ishikawa K.-I., Mori A., Oji Y., Okuzumi A., Fukuhara T., Koinuma T., Imamichi Y., Nagumo M., Furuya N., Nojiri S., Amo T., Yamashiro K., Hattori N. Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci. Rep. 2017; 7(1):7328. https://doi.org/10.1038/s41598-017-06767-y
58. Schlaepfer I.R., Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology. 2020;161(2):bqz046. https://doi.org/10.1210/endocr/bqz046
59. Shortall K., Djeghader A., Magner E., Soulimane T. Insights into aldehyde dehydrogenase enzymes: a structural perspective. Front. Mol. Biosci. 2021;8:659550. https://doi.org/10.3389/fmolb.2021.659550
60. Sohrabi S., Mor D.E., Kaletsky R., Keyes W., Murphy C.T. Highthroughput behavioral screen in C. elegans reveals Parkinson’s disease drug candidates. Commun. Biol. 2021;4(1):203. https://doi.org/10.1038/s42003-021-01731-z
61. Song M., Schnettler E., Venkatachalam A., Wang Y., Feldman L., Argenta P., Rodriguez-Rodriguez L., Ramakrishnan S. Increased expression of collagen prolyl hydroxylases in ovarian cancer is associated with cancer growth and metastasis. Am. J. Cancer Res. 2023;13(12):6051-6062
62. Thanvi B., Lo N., Robinson T. Vascular parkinsonism - an important cause of parkinsonism in older people. Age Ageing. 2005;34(2): 114-119. https://doi.org/10.1093/ageing/afi025
63. Tomkins J.E., Manzoni C. Advances in protein-protein interaction network analysis for Parkinson’s disease. Neurobiol. Dis. 2021;155: 105395. https://doi.org/10.1016/j.nbd.2021.105395
64. Trabjerg M.S., Andersen D.C., Huntjens P., Mørk K., Warming N., Kullab U.B., Skjønnemand M.-L.N., Oklinski M.K., Oklinski K.E., Bolther L., Kroese L.J., Pritchard C.E.J., Huijbers I.J., Corthals A., Søndergaard M.T., Kjeldal H.B., Pedersen C.F.M., Nieland J.D.V. Inhibition of carnitine palmitoyl-transferase 1 is a potential target in a mouse model of Parkinson’s disease. NPJ Parkinsons Dis. 2023; 9(1):6. https://doi.org/10.1038/s41531-023-00450-y
65. Tukey R.H., Strassburg C.P. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 2000;40(1):581-616. https://doi.org/10.1146/annurev.pharmtox.40.1.581
66. Urban D., Lorenz J., Meyborg H., Ghosh S., Kintscher U., Kaufmann J., Fleck E., Kappert K., Stawowy P. Proprotein convertase furin enhances survival and migration of vascular smooth muscle cells via processing of pro-nerve growth factor. J. Biochem. 2013;153(2): 197-207. https://doi.org/10.1093/jb/mvs137
67. Vale T.C., Barbosa M.T., Caramelli P., Cardoso F. Vascular Parkinsonism and cognitive impairment: literature review, Brazilian studies and case vignettes. Dement. Neuropsychol. 2012;6(3):137-144. https://doi.org/10.1590/S1980-57642012DN06030005
68. Valente E.M., Abou-Sleiman P.M., Caputo V., Muqit M.M.K., Harvey K., Gispert S., Ali Z., Del Turco D., Bentivoglio A.R., Healy D.G., Albanese A., Nussbaum R., González-Maldonado R., Deller T., Salvi S., Cortelli P., Gilks W.P., Latchman D.S., Harvey R.J., Dallapiccola B., Auburger G., Wood N.W. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158-1160. https://doi.org/10.1126/science.1096284
69. Virmani A., Pinto L., Bauermann O., Zerelli S., Diedenhofen A., Binienda Z.K., Ali S.F., Van Der Leij F.R. The carnitine palmitoyl transferase (CPT) system and possible relevance for neuropsychiatric and neurological conditions. Mol. Neurobiol. 2015;52(2): 826-836. https://doi.org/10.1007/s12035-015-9238-7
70. Vos M., Geens A., Böhm C., Deaulmerie L., Swerts J., Rossi M., Craessaerts K., Leites E.P., Seibler P., Rakovic A., Lohnau T., De Strooper B., Fendt S.-M., Morais V.A., Klein C., Verstreken P. Cardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency. J. Cell Biol. 2017;216(3):695-708. https://doi.org/10.1083/jcb.201511044
71. Wang Mingyue, Xie Y., Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res. Bull. 2021;166:172-184. https://doi.org/10.1016/j.brainresbull.2020.11.005
72. Wang Muyun, Wang K., Liao X., Hu H., Chen L., Meng L., Gao W., Li Q. Carnitine palmitoyltransferase system: a new target for antiinflammatory and anticancer therapy? Front. Pharmacol. 2021;12: 760581. https://doi.org/10.3389/fphar.2021.760581
73. Wang Yu, Yu W., Li S., Guo D., He J., Wang Yugang. Acetyl-CoA carboxylases and diseases. Front. Oncol. 2022;12:836058. https://doi.org/10.3389/fonc.2022.836058
74. Wey M.C.-Y., Fernandez E., Martinez P.A., Sullivan P., Goldstein D.S., Strong R. Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson’s disease. PLoS One. 2012;7(2):e31522. https://doi.org/10.1371/journal.pone.0031522
75. Wichaiyo S., Koonyosying P., Morales N.P. Functional roles of furin in cardio-cerebrovascular diseases. ACS Pharmacol. Transl. Sci. 2024; 7(3):570-585. https://doi.org/10.1021/acsptsci.3c00325
76. Wishart D.S., Guo A., Oler E., Wang F., Anjum A., Peters H., Dizon R., Sayeeda Z., Tian S., Lee B.L., Berjanskii M., Mah R., Yamamoto M., Jovel J., Torres-Calzada C., Hiebert-Giesbrecht M., Lui V.W., Varshavi Dorna, Varshavi Dorsa, Allen D., Arndt D., Khetarpal N., Sivakumaran A., Harford K., Sanford S., Yee K., Cao X., Budinski Z., Liigand J., Zhang L., Zheng J., Mandal R., Karu N., Dambrova M., Schiöth H.B., Greiner R., Gautam V. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 2022;50(D1): D622-D631. https://doi.org/10.1093/nar/gkab1062
77. Wuolikainen A., Jonsson P., Ahnlund M., Antti H., Marklund S.L., Moritz T., Forsgren L., Andersen P.M., Trupp M. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson’s di sease and control subjects. Mol. BioSyst. 2016;12(4):1287-1298. https://doi.org/10.1039/C5MB00711A
78. Xu Y., Xia D., Huang K., Liang M. Hypoxia-induced P4HA1 overexpression promotes post-ischemic angiogenesis by enhancing endothelial glycolysis through downregulating FBP1. J. Transl. Med. 2024;22(1):74. https://doi.org/10.1186/s12967-024-04872-x
79. Yakala G.K., Cabrera-Fuentes H.A., Crespo-Avilan G.E., Rattanasopa C., Burlacu A., George B.L., Anand K., Mayan D.C., Corlianò M., Hernández-Reséndiz S., Wu Z., Schwerk A.M.K., Tan A.L.J., Trigueros-Motos L., Chèvre R., Chua T., Kleemann R., Liehn E.A., Hausenloy D.J., Ghosh S., Singaraja R.R. FURIN inhibition reduces vascular remodeling and atherosclerotic lesion progression in mice. Arterioscler. Thromb. Vasc. Biol. 2019;39(3):387-401. https://doi.org/10.1161/ATVBAHA.118.311903
80. Yamada M., Hayashi H., Yuuki M., Matsushima N., Yuan B., Takagi N. Furin inhibitor protects against neuronal cell death induced by activated NMDA receptors. Sci. Rep. 2018;8(1):5212. https://doi.org/10.1038/s41598-018-23567-0
81. Yao V., Kaletsky R., Keyes W., Mor D.E., Wong A.K., Sohrabi S., Murphy C.T., Troyanskaya O.G. An integrative tissue-network approach to identify and test human disease genes. Nat. Biotechnol. 2018;36(11):1091-1099. https://doi.org/10.1038/nbt.4246
82. Zhao H., Wang C., Zhao N., Li W., Yang Z., Liu X., Le W., Zhang X. Potential biomarkers of Parkinson’s disease revealed by plasma metabolic profiling. J. Chromatogr. B. 2018;1081-1082:101-108. https://doi.org/10.1016/j.jchromb.2018.01.025
83. Zijlmans J.C.M., Thijssen H.O.M., Vogels O.J.M., Kremer H.P.H.M.P., Poels P.J.E., Schoonderwaldt H.C., Merx J.L., van’t Hof M.A., Thien Th., Horstink M.W.I.M. MRI in patients with suspected vascular parkinsonism. Neurology. 1995;45(12):2183-2188. https://doi.org/10.1212/WNL.45.12.2183
84. Zolotareva O., Saik O.V., Königs C., Bragina E.Yu., Goncharova I.A., Freidin M.B., Dosenko V.E., Ivanisenko V.A., Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci. Rep. 2019;9(1): 16302. https://doi.org/10.1038/s41598-019-52762-w