Preview

Vavilov Journal of Genetics and Breeding

Advanced search

PlantReg: the reconstruction of links between transcription factor regulatory networks and biological processes under their control

https://doi.org/10.18699/vjgb-24-102

Abstract

The description of the path from a gene to a trait, as the main task of many areas in biology, is currently being equipped with new methods affecting not only experimental techniques, but also analysis of the results. The pleiotropic effect of a gene is due to its participation in numerous biological processes involved in different traits. A widespread use of genome-wide sequencing of transcripts and transcription factor (TF) binding regions has made the following tasks relevant: unveiling pleiotropic effects of TFs based on the functions of their target genes; compiling the lists of TFs that regulate biological processes of interest; and describing the ways of TF functioning (their primary and secondary targets, higher order targets, TF interactions in the process under study). We have previously developed a method for the reconstruction of TF regulatory networks and proposed an approach that allows identifying which biological processes are controlled by these networks and how this control is exerted. In this paper, we have implemented the approach as PlantReg, a program available as a web service. The paper describes how the program works. The input consists of a list of genes and a list of TFs – known or putative transcriptional regulators of these genes. As an output, the program provides a list of biological processes enriched for these genes, as well as information about by which TFs and through which genes these processes are controlled. We illustrated the use of PlantReg deciphering transcriptional regulation of processes initiated at the early salt stress response in Arabidopsis thaliana L. With PlantReg, we identified biological processes stimulated by the stress, and specific sets of TFs that activate each process. With one of these processes (response to abscisic acid) as an example, we showed that salt stress mainly affects abscisic acid signaling and identified key TFs in this regulation. Thus, PlantReg is a convenient tool for generating hypotheses about the molecular mechanisms that control plant traits.

About the Authors

V. V. Lavrekha
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



N. A. Omelyanchuk
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. G. Bogomolov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. V. Zemlyanskaya
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



References

1. Aerts N., Hickman R., Van Dijken A.J., Kaufmann M., Snoek B.L., Pieterse C.M., Van Wees S.C. Architecture and dynamics of the abscisic acid gene regulatory network. Plant J. 2024;119(5):2538-2563. doi 10.1111/tpj.16899

2. Azameti M.K., Tanuja N., Kumar S., Rathinam M., Imoro A.W.M., Singh P.K., Gaikwad K., Sreevathsa R., Dalal M., Arora A., Rai V., Padaria J.C. Transgenic tobacco plants overexpressing a wheat salt stress root protein (TaSSRP) exhibit enhanced tolerance to heat stress. Mol. Biol. Rep. 2024;51(1):791. doi 10.1007/s11033-024-09755-4

3. Chaffai R., Ganesan M., Cherif A. Mechanisms of plant response to heat stress: recent insights. In: Plant Adaptation to Abiotic Stress: From Signaling Pathways and Microbiomes to Molecular Mechanisms. Singapore: Springer, 2024;83-105. doi 10.1007/978-981-97-0672-3_5

4. Chang H., Wu T., Shalmani A., Xu L., Li C., Zhang W., Pan R. Heat shock protein HvHSP16.9 from wild barley enhances tolerance to salt stress. Physiol. Mol. Biol. Plants. 2024;30(5):687-704. doi 10.1007/s12298-024-01455-4

5. Chen J.W., Shrestha L., Green G., Leier A., Marquez-Lago T.T. The hitchhikers’ guide to RNA sequencing and functional analysis. Brief. Bioinform. 2023;24(1):bbac529. doi 10.1093/bib/bbac529

6. Chen L., Zhang L., Li D., Wang F., Yu D. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2013;110(21):E1963-E1971. doi 10.1073/pnas.1221347110

7. Defoort J., Van de Peer Y., Vermeirssen V. Function, dynamics and evolution of network motif modules in integrated gene regulatory networks of worm and plant. Nucleic Acids Res. 2018;46(13):6480-6503. doi 10.1093/nar/gky468

8. Fidler J., Graska J., Gietler M., Nykiel M., Prabucka B., Rybarczyk-Płońska A., Muszyńska E., Morkunas I., Labudda M. PYR/PYL/RCAR receptors play a vital role in the abscisic-acid-dependent responses of plants to external or internal stimuli. Cells. 2022;11(8): 1352. doi 10.3390/cells11081352

9. Ghorbani R., Alemzadeh A., Razi H. Microarray analysis of transcriptional responses to salt and drought stress in Arabidopsis thaliana. Heliyon. 2019;5(11):e02614. doi 10.1016/j.heliyon.2019.e02614

10. Halkier B.A., Gershenzon J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006;57(1):303-333. doi 10.1146/annurev.arplant.57.032905.105228

11. He X., Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet. 2006;2(6):88. doi 10.1371/journal.pgen.0020088

12. Hecker D., Lauber M., Behjati Ardakani F., Ashrafiyan S., Manz Q., Kersting J., Hoffmann M., Schulz M.H., List M. Computational tools for inferring transcription factor activity. Proteomics. 2023; 23(23-24):2200462. doi 10.1002/pmic.202200462

13. Hossain M.A., Henríquez-Valencia C., Gómez-Páez M., Medina J., Orellana A., Vicente-Carbajosa J., Zouhar J. Identification of novel components of the unfolded protein response in Arabidopsis. Front. Plant Sci. 2016;7:650. doi 10.3389/fpls.2016.00650

14. Hu Y., Chen L., Wang H., Zhang L., Wang F., Yu D. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J. 2013;74(5):730-745. doi 10.1111/tpj.12159

15. Jensen M.K., Lindemose S., De Masi F., Reimer J.J., Nielsen M., Perera V., Workman C.T., Turck F., Grant M.R., Mundy J., Petersen M., Skriver K. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio. 2013;3:321-327. doi 10.1016/j.fob.2013.07.006

16. Jiang Y., Deyholos M.K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol. Biol. 2009;69(1-2):91-105. doi 10.1007/s11103-008-9408-3

17. Joseph B., Jini D. Salinity induced programmed cell death in plants: challenges and opportunities for salt-tolerant plants. J. Plant Sci. 2010;5(4):376-390. doi 10.3923/jps.2010.376.390

18. Kang J., Yim S., Choi H., Kim A., Lee K.P., Lopez-Molina L., Martinoia E., Lee Y. Abscisic acid transporters cooperate to control seed germination. Nat. Commun. 2015;6(1):8113. doi 10.1038/ncomms9113

19. Kesawat M.S., Satheesh N., Kherawat B.S., Kumar A., Kim H.U., Chung S.M., Kumar M. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules – сurrent perspectives and future directions. Plants. 2023; 12(4):864. doi 10.3390/plants12040864

20. Khan M.I.R., Syeed S., Nazar R., Anjum N.A. An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In: Khan N., Nazar R., Iqbal N., Anjum N. (Eds). Phytohormones and Abiotic Stress Tolerance in Plants. Berlin; Heidelberg: Springer, 2012;277-300. doi 10.1007/978-3-642-25829-9_12

21. Ko D.K., Kim J.Y., Thibault E.A., Brandizzi F. An IRE1-proteasome system signalling cohort controls cell fate determination in unresolved proteotoxic stress of the plant endoplasmic reticulum. Nat. Plants. 2023;9(8):1333-1346. doi 10.1038/s41477-023-01480-3

22. Kolmykov S., Yevshin I., Kulyashov M., Sharipov R., Kondrakhin Y., Makeev V.J., Kulakovskiy I.V., Kel A., Kolpakov F. GTRD: an integrated view of transcription regulation. Nucleic Acids Res. 2021;49: 104-111. doi 10.1093/nar/gkaa1057

23. Koops P., Pelser S., Ignatz M., Klose C., Marrocco-Selden K., Kretsch T. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J. Exp. Bot. 2011;62(15):5547-5560. doi 10.1093/jxb/err236

24. Kumar M., Kumari P., Reddy C.R.K., Jha B. Salinity and desiccation induced oxidative stress acclimation in seaweeds. Adv. Bot. Res. 2014;71:91-123. doi 10.1016/B978-0-12-408062-1.00004-4

25. Lavrekha V.V., Levitsky V.G., Tsukanov A.V., Bogomolov A.G., Grigorovich D.A., Omelyanchuk N., Ubogoeva E.V., Zemlyanskaya E.V., Mironova V. CisCross: A gene list enrichment analysis to predict upstream regulators in Arabidopsis thaliana. Front. Plant Sci. 2022;13:942710. doi 10.3389/fpls.2022.942710

26. Li H., Jiang H., Bu Q., Zhao Q., Sun J., Xie Q., Li C. The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response. Plant Physiol. 2011;156(2):550-563. doi 10.1104/pp.111.176214

27. Li J., Brader G., Kariola T., Tapio Palva E. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J. 2006;46(3): 477-491. doi 10.1111/j.1365-313X.2006.02712.x

28. Li J., Besseau S., Törönen P., Sipari N., Kollist H., Holm L., Palva E.T. Defense‐related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol. 2013;200(2):457-472. doi 10.1111/nph.12378

29. Li P., Li X., Jiang M. CRISPR/Cas9-mediated mutagenesis of WRKY3 and WRKY4 function decreases salt and Me-JA stress tolerance in Arabidopsis thaliana. Mol. Biol. Rep. 2021;48(8):5821-5832. doi 10.1007/s11033-021-06541-4

30. Liu J.X., Srivastava R., Che P., Howell S.H. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J. 2007;51(5):897-909. doi 10.1111/j.1365-313X.2007.03195.x

31. Liu Y., Ji X., Zheng L., Nie X., Wang Y. Microarray analysis of transcriptional responses to abscisic acid and salt stress in Arabidopsis thaliana. Int. J. Mol. Sci. 2013;14(5):9979-9998. doi 10.3390/ijms14059979

32. Lopez-Molina L., Mongrand S., Kinoshita N., Chua N.-H. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev. 2003;17:410-418. doi 10.1101/gad.1055803

33. Lu Y., Fricke W. Salt stress – regulation of root water uptake in a wholeplant and diurnal context. Int. J. Mol. Sci. 2023;24(9):8070. doi 10.3390/ijms24098070

34. Morant M., Ekstrøm C., Ulvskov P., Kristensen C., Rudemo M., Olsen C.E., Hansen J., Jørgensen K., Jørgensen B., Møller B.L., Bak S. Metabolomic, transcriptional, hormonal, and signaling cross-talk in superroot2. Mol. Plant. 2010;3(1):192-211. doi 10.1093/mp/ssp098

35. Ndathe R., Kato N. Phosphatidic acid produced by phospholipase Dα1 and Dδ is incorporated into the internal membranes but not involved in the gene expression of RD29A in the abscisic acid signaling network in Arabidopsis thaliana. Front. Plant Sci. 2024;15:1356699. doi 10.3389/fpls.2024.1356699

36. Omelyanchuk N.A., Lavrekha V.V., Bogomolov A.G., Dolgikh V.A., Sidorenko A.D., Zemlyanskaya E.V. Computational reconstruction of the transcription factor regulatory network induced by auxin in Arabidopsis thaliana L. Plants. 2024;13(14):1905. doi 10.3390/plants13141905

37. O’Malley R.C., Huang S.S.C., Song L., Lewsey M.G., Bartlett A., Nery J.R., Galli M., Gallavotti A., Ecker J.R. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell. 2016; 165:1280-1292. doi 10.1016/j.cell.2016.04.038

38. Pan J., Wang H., Hu Y., Yu D. Arabidopsis VQ18 and VQ26 proteins interact with ABI5 transcription factor to negatively modulate ABA response during seed germination. Plant J. 2018;95(3):529-544. doi 10.1111/tpj.13969

39. Pan W., Lin B., Yang X., Liu L., Xia R., Li J., Wu Y., Xie Q. The UBC27-AIRP3 ubiquitination complex modulates ABA signaling by promoting the degradation of ABI1 in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2020;117(44):27694-27702. doi 10.1073/pnas.2007366117

40. Park Y., Xu Z.-Y., Kim S.Y., Lee J., Choi B., Lee J., Kim H., Sim H.-J., Hwang I. Spatial regulation of ABCG25, an ABA exporter, is an important component of the mechanism controlling cellular ABA levels. Plant Cell. 2016;28(10):2528-2544. doi 10.1105/tpc.16.00359

41. Peng Y., Zhu H., Wang Y., Kang J., Hu L., Li L., Zhu K., Yan J., Bu X., Wang X., Zhang Y., Sun X., Ahammed G.J., Jiang C., Meng S., Liu Y., Sun Z., Qi M., Li T., Wang F. Revisiting the role of light signaling in plant responses to salt stress. Hortic. Res. 2024;uhae262. doi 10.1093/hr/uhae262

42. Qi C., Zhang H., Liu Y., Wang X., Dong D., Yuan X., Li X., Zhang X., Li X., Zhang N., Guo Y.-D. CsSNAT positively regulates salt tolerance and growth of cucumber by promoting melatonin biosynthesis. Environ. Exp. Bot. 2020;175:104036. doi 10.1016/j.envexpbot.2020.104036

43. Rodriguez M.C., Mehta D., Tan M., Uhrig R.G. Quantitative proteome and PTMome analysis of Arabidopsis thaliana root responses to persistent osmotic and salinity stress. Plant Cell Physiol. 2021;62(6): 1012-1029. doi 10.1093/pcp/pcab076

44. Sakuma Y., Liu Q., Dubouzet J.G., Abe H., Shinozaki K., Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydrationand cold-inducible gene expression. Biochem. Biophys. Res. Commun. 2002;290(3);998-1009. doi 10.1006/bbrc.2001.6299

45. Samuel M.A., Mudgil Y., Salt J.N., Delmas F., Ramachandran S., Chilelli A., Goring D.R. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol. 2008;147(4): 2084-2095. doi 10.1104/pp.108.123380

46. Sanyal S.K., Pandey G.K. ERF111/ABR1: An AP2 domain transcription factor serving as a hub for multiple signaling pathways. J. Plant Growth Regul. 2024. doi 10.1007/s00344-023-11225-3

47. Serraj R., Roy G., Drevon J.J. Salt stress induces a decrease in the oxygen uptake of soybean nodules and in their permeability to oxygen diffusion. Physiol. Plant. 1994;91(2):161-168. doi 10.1111/j.1399-3054.1994.tb00414.x

48. Shamloo-Dashtpagerdi R., Aliakbari M., Lindlöf A., Tahmasebi S. A systems biology study unveils the association between a melatonin biosynthesis gene, O-methyl transferase 1 (OMT1) and wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. Planta. 2022;255(5):99. doi 10.1007/s00425-022-03885-4

49. Shang Y., Yang D., Ha Y., Shin H.Y., Nam K.H. Receptor-like protein kinases RPK1 and BAK1 sequentially form complexes with the cytoplasmic kinase OST1 to regulate ABA-induced stomatal closure. J. Exp. Bot. 2020;71(4):1491-1502. doi 10.1093/jxb/erz489

50. Sharma M., Irfan M., Kumar A., Kumar P., Datta A. Recent insights into plant circadian clock response against abiotic stress. J. Plant Growth Regul. 2022;41(8):3530-3543. doi 10.1007/s00344-021-10531-y

51. Szepesi Á., Csiszár J., Gémes K., Horváth E., Horváth F., Simon M.L., Tari I. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J. Plant Physiol. 2009;166(9):914-925. doi 10.1016/j.jplph.2008.11.012

52. Tan S., Sha Y., Sun L., Li Z. Abiotic stress-induced leaf senescence: regulatory mechanisms and application. Int. J. Mol. Sci. 2023; 24(15):11996. doi 10.3390/ijms241511996

53. Wang L.Y., Li J., Gong B., Wang R.H., Chen Y.L., Yin J., Yang C., Lin J.-T., Liu H.-Z., Yang Y., Li J., Li C., Yao N. Orosomucoid proteins limit endoplasmic reticulum stress in plants. New Phytol. 2023;240(3):1134-1148. doi 10.1111/nph.19200

54. Wang M., Xu Q., Yuan M. The unfolded protein response induced by salt stress in Arabidopsis. Methods Enzymol. 2011;489:319-328. doi 10.1016/B978-0-12-385116-1.00018-2

55. Wang Z., Mao Y., Liang L., Pedro G.C., Zhi L., Li P., Hu X. HFR1 antagonizes ABI4 to coordinate cytosolic redox status for seed germination under high‐temperature stress. Physiol. Plant. 2024;176(4): e14490. doi 10.1111/ppl.14490

56. Warpeha K.M., Upadhyay S., Yeh J., Adamiak J., Hawkins S.I., Lapik Y.R., Anderson M.B., Kaufman L.S. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol. 2007;143(4):1590-1600. doi 10.1104/pp.106.089904

57. Wawrzynska A., Christiansen K.M., Lan Y., Rodibaugh N.L., Innes R.W. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. Plant Physiol. 2008;148(3):1510-1522. doi 10.1104/pp.108.127605

58. Wu T., Goh H., Azodi C.B., Krishnamoorthi S., Liu M.J., Urano D. Evolutionarily conserved hierarchical gene regulatory networks for plant salt stress response. Nat. Plants. 2021а;7(6):787-799. doi 10.1038/s41477-021-00929-7

59. Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Feng T., Zhou L., Tang W., Zhan L.I., Fu X. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021b;2(3):100141. doi 10.1016/j.xinn.2021.100141

60. Yu G., Wang L., Han Y., He Q. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5): 284-287. doi 10.1089/omi.2011.0118

61. Yuan K., Rashotte A.M., Wysocka-Diller J.W. ABA and GA signaling pathways interact and regulate seed germination and seedling de velopment under salt stress. Acta Physiol. Plant. 2011;33:261-271. doi 10.1007/s11738-010-0542-6

62. Zhang H., Liu D., Yang B., Liu W.Z., Mu B., Song H., Chen B., Li Y., Ren D., Deng H., Jiang Y.Q. Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors. J. Exp. Bot. 2020;71(1): 188-203. doi 10.1093/jxb/erz432

63. Zhang L., Li Q., Shen J., Xue J., Han Y. Transcriptional regulatory networks in response to salt and drought stress in Arabidopsis thaliana. J. Med. Plants Res. 2012;6(6):950-958. doi 10.5897/JMPR11.240

64. Zhang L., Zhang X., Fan S. Meta-analysis of salt-related gene expression profiles identifies common signatures of salt stress responses in Arabidopsis. Plant Syst. Evol. 2017;303:757-774. doi 10.1007/s00606-017-1407-x

65. Zhao G., Cheng Q., Zhao Y., Wu F., Mu B., Gao J., Yang L., Yan J., Zhang H., Cui X., Chen Q., Lu F., Ao Q., Amdouni A., Jiang Y.-Q., Yang B. The abscisic acid-responsive element binding factors MAPKKK18 module regulates abscisic acid-induced leaf senescence in Arabidopsis. J. Biol. Chem. 2023;299(4):103060. doi 10.1016/j.jbc.2023.103060

66. Zhou M., Zhang J., Shen J., Zhou H., Zhao D., Gotor C., Romero L.C., Fu L., Li Z., Yang J., Shen W., Yuan X., Xie Y. Hydrogen sulfidelinked persulfidation of ABI4 controls ABA responses through the transactivation of MAPKKK18 in Arabidopsis. Mol. Plant. 2021; 14(6):921-936. doi 10.1016/j.molp.2021.03.007

67. Zhou X., Hao H., Zhang Y., Bai Y., Zhu W., Qin Y., Yuan F., Zhao F., Wang M., Hu J., Xu H., Guo A., Zhao H., Zhao Y., Cao C., Yang Y., Schumaker K.S., Guo Y., Xie C.G. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-type protein kinase, is important for abscisic acid responses in Arabidopsis through phosphorylation of ABSCISIC ACID-INSENSITIVE5. Plant Physiol. 2015;168(2):659-676. doi 10.1104/pp.114.255455

68. Zhu S.Y., Yu X.C., Wang X.J., Zhao R., Li Y., Fan R.C., Shang Y., Du S.Y., Wang X.F., Wu F.Q., Xu Y.H., Zhang X.Y., Zhang D.P. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell. 2007; 19(10):3019-3036. doi 10.1105/tpc.107.050666


Review

Views: 240


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)