Heat shock proteins in protein folding and reactivation
https://doi.org/10.18699/vjgb-25-02
Abstract
Throughout their lives, cells synthesise new and dispose of the old, denatured proteins and insoluble protein aggregates. An important role in maintaining proteostasis is played by chaperones, which fold various proteins and promote degradation of denatured or misfolded proteins via proteasomes or autophagy. Despite protein folding being an accurate process, as organisms age and experience stress, errors accumulate, which leads to the formation of protein aggregates that can result in pathological changes. In addition, stress factors such as elevated temperature and altered pH can promote protein denaturation that can result in the proteins not only losing their native functions, but also gaining novel cytotoxic properties. With the increase of human average lifespan, more and more cases of proteinopathies – diseases caused by disruptions in proteostasis, e. g. Alzheimer’s disease, Huntington’s disease etc. – emerge. Therefore, identification of mechanisms preventing the formation of cytotoxic protein aggregates and promoting their clearance is of high importance. Heat shock proteins (HSPs) are the molecular chaperones involved in folding nascent proteins and refolding the denatured ones, leading to their reactivation. Heat shock proteins vary in structure and functions and are found in all prokaryotes and eukaryotes discovered to date. HSPs are constantly synthesised in cells under normal conditions, and a multitude of them are dramatically up-regulated during stress, which includes heat shock (which earned them their name) and metabolic stress caused by the increased numbers of misfolded proteins. In this review, we describe mechanisms of action and functions of members of five heat shock protein families.
About the Authors
D. MalkeyevaRussian Federation
Novosibirsk
E. V. Kiseleva
Russian Federation
Novosibirsk
S. A. Fedorova
Russian Federation
Novosibirsk
References
1. Avellaneda M.J., Franke K.B., Sunderlikova V., Bukau B., Mogk A., Tans S.J. Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature. 2020;578(7794):317-320. doi: 10.1038/s41586-020-1964-y
2. Bar-Lavan Y., Shemesh N., Ben-Zvi A. Chaperone families and interactions in metazoa. Essays Biochem. 2016;60(2):237-253. doi: 10.1042/EBC20160004
3. Brocchieri L., Conway de Macario E., Macario A.J. Hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol. 2008;8(1):19. doi 10.1186/1471-2148-8-19
4. Clare D.K., Vasishtan D., Stagg S., Quispe J., Farr G.W., Topf M., Horwich A.L., Saibil H.R. ATP-triggered conformational changes de lineate substrate-binding and -folding mechanics of the GroEL cha peronin. Cell. 2012;149(1):113-123. doi: 10.1016/j.cell.2012.02.047
5. Duran E.C., Weaver C.L., Lucius A.L. Comparative analysis of the structure and function of AAA+ motors ClpA, ClpB, and Hsp104: common threads and disparate functions. Front Mol Biosci. 2017; 4:54. doi: 10.3389/fmolb.2017.00054
6. Ellis J. Proteins as molecular chaperones. Nature. 1987;328(6129): 378-379. doi: 10.1038/328378a0
7. Fan F., Duan Y., Yang F., Trexler C., Wang H., Huang L., Li Y., Tang H., Wang G., Fang X., Liu J., Jia N., Chen J., Ouyang K. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ. 2020;27(2):587-600. doi: 10.1038/s41418-019-0374-x
8. Feder M.E., Hofmann G.E. Heat-shock proteins, molecular chapero nes, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999;61(1):243-282. doi: 10.1146/annurev.physiol.61.1.243
9. Fu X. Insights into how small heat shock proteins bind a great diversity of substrate proteins: a super-transformer model. In: Tanguay R.M., Hightower L.E. (Eds) The Big Book on Small Heat Shock Proteins. Cham: Springer Int. Pub., 2015;107-117. doi: 10.1007/978-3-319-16077-1_4
10. Hayer-Hartl M. From chaperonins to Rubisco assembly and metabolic repair. Protein Sci. 2017;26(12):2324-2333. doi: 10.1002/pro.3309
11. Hemmingsen S.M. What is a chaperonin? Nature. 1992;357(6380): 650-650. doi: 10.1038/357650b0
12. Hodson S., Marshall J.J.T., Burston S.G. Mapping the road to recovery: the ClpB/Hsp104 molecular chaperone. J Struct Biol. 2012;179(2): 161-171. doi: 10.1016/j.jsb.2012.05.015
13. Horwich A.L. Protein folding in the cell: an inside story. Nat Med. 2011;17(10):1211-1216. doi: 10.1038/nm.2468
14. Jolly C., Morimoto R.I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst. 2000;92(19):1564-1572. doi: 10.1093/jnci/92.19.1564
15. Kakkar V., Meister-Broekema M., Minoia M., Carra S., Kampinga H.H. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech. 2014;7(4):421-434. doi: 10.1242/dmm.014563
16. Kampinga H.H., Hageman J., Vos M.J., Kubota H., Tanguay R.M., Bruford E.A., Cheetham M.E., Chen B., Hightower L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14(1):105-111. doi: 10.1007/s12192-008-0068-7
17. Koumoto Y., Shimada T., Kondo M., Hara-Nishimura I., Nishimura M. Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana. J Biol Chem. 2001;276(32): 29688-29694. doi: 10.1074/jbc.M102330200
18. Kumar C.M.S., Mande S.C., Mahajan G. Multiple chaperonins in bacteria-novel functions and non-canonical behaviors. Cell Stress Chaperones. 2015;20(4):555-574. doi: 10.1007/s12192-015-0598-8
19. Larburu N., Adams C.J., Chen C.-S., Nowak P.R., Ali M.M.U. Mechanism of Hsp70 specialized interactions in protein translocation and the unfolded protein response. Open Biol. 2020;10(8):200089. doi: 10.1098/rsob.200089
20. Li J., Buchner J. Structure, function and regulation of the Hsp90 machinery. Biomed J. 2013;36(3):106-117. doi: 10.4103/2319-4170.113230
21. Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55(1): 1151-1191. doi: 10.1146/annurev.bi.55.070186.005443
22. Lopez T., Dalton K., Frydman J. The mechanism and function of group II chaperonins. J Mol Biol. 2015;427(18):2919-2930. doi: 10.1016/j.jmb.2015.04.013
23. Macario A.J.L., Grippo T.M., de Macario E.C. Genetic disorders involving molecular-chaperone genes: a perspective. Genet Med. 2005;7(1):3-12. doi: 10.1097/01.GIM.0000151351.11876.C3
24. Mogk A., Kummer E., Bukau B. Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front Mol Biosci. 2015;2:22. doi: 10.3389/fmolb.2015.00022
25. Mogk A., Ruger-Herreros C., Bukau B. Cellular functions and mechanisms of action of small heat shock proteins. Annu Rev Microbiol. 2019;73(1):89-110. doi: 10.1146/annurev-micro-020518-115515
26. Mokry D.Z., Abrahão J., Ramos C.H.I. Disaggregases, molecular chaperones that resolubilize protein aggregates. An Acad Bras Cienc. 2015;87(2 suppl):1273-1292. doi: 10.1590/0001-3765201520140671
27. Paul A., Rao S., Mathur S. The α-crystallin domain containing genes: identification, phylogeny and expression profiling in abiotic stress, phytohormone response and development in tomato (Solanum lyco persicum). Front Plant Sci. 2016;7:426. doi: 10.3389/fpls.2016.00426
28. Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 2016;21(3):379-404. doi: 10.1007/s12192-016-0676-6
29. Rosenzweig R., Nillegoda N.B., Mayer M.P., Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 2019;20(11):665-680. doi: 10.1038/s41580-019-0133-3
30. Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013;14(10):630-642. doi: 10.1038/nrm3658
31. Saji H., Iizuka R., Yoshida T., Abe T., Kidokoro S., Ishii N., Yohda M. Role of the IXI/V motif in oligomer assembly and function of StHsp14.0, a small heat shock protein from the acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Proteins Struct Funct Bioin form. 2008;71(2):771-782. doi: 10.1002/prot.21762
32. Sarkar S., Singh M.D., Yadav R., Arunkumar K.P., Pittman G.W. Heat shock proteins: molecules with assorted functions. Front Biol (Beijing). 2011;6(4):312. doi: 10.1007/s11515-011-1080-3
33. Sørensen J.G., Kristensen T.N., Loeschcke V. The evolutionary and ecological role of heat shock proteins. Ecol Lett. 2003;6(11):1025-1037. doi: 10.1046/j.1461-0248.2003.00528
34. Tower J. Heat shock proteins and Drosophila aging. Exp Gerontol. 2011;46(5):355-362. doi: 10.1016/j.exger.2010.09.002
35. van Leeuwen F.W., Kampinga H.H. Heat shock proteins and protein quality control in Alzheimer’s disease. In: Wolfe M.S. (Ed.) The Molecular and Cellular Basis of Neurodegenerative Diseases. Academic Press, 2018;269-298. doi: 10.1016/B978-0-12-811304-2.00010-9
36. Xiao C., Hull D., Qiu S., Yeung J., Zheng J., Barwell T., Robertson R.M., Seroude L. Expression of heat shock protein 70 is insufficient to extend Drosophila melanogaster longevity. G3 (Bethesda). 2019;9(12):4197-4207. doi: 10.1534/g3.119.400782
37. Zhang S., Zhou H., Yu F., Bai C., Zhao Q., He J., Liu C. Structural insight into the cooperation of chloroplast chaperonin subunits. BMC Biol. 2016;14(1):29. doi: 10.1186/s12915-016-0251-8
38. Żwirowski S., Kłosowska A., Obuchowski I., Nillegoda N.B., Piróg A., Ziętkiewicz S., Bukau B., Mogk A., Liberek K. Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. EMBO J. 2017;36(6):783-796. doi: 10.15252/embj.201593378