Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Effect of cytoplasmic male sterility type on chlorophyll content in leaves of grain sorghum hybrids

https://doi.org/10.18699/VJ15.070

Abstract

New types of CMS-inducing cytoplasms cannot be applied to hybrid sorghum breeding without knowledge of their effects on major biological and commercial plant traits. In our studies of F1 hybrids obtained by crossing of two sets of isonuclear CMS lines (with nuclear genomes of cv. Pishchevoye 614 (P614) and Zhelyozyornoye 10 (Zh10)) to two pollen parents (cv. Pishchevoye 35 (P35) and Mercury), we focused our attention on the effects of A3, A4, 9E, and M35-1A cytoplasms on chlorophyll content at different developmental stages of sorghum plants. It was found that hybrids with different types of male-sterile cytoplasm differed in chlorophyll content, and the genotypes of the CMS line and the pollen parent influenced the manifestation of cytoplasmic differences. In the F1 hybrids obtained with CMS lines possessing the P614 genome, sterile M35-1A cytoplasm increased chlorophyll a content, in comparison to 9E cytoplasm. In the F1 hybrids obtained with CMS lines with the Zh10 genome and the P35 pollen parent, sterile A4 cytoplasm increased the sum of chlorophyll a and b, in comparison to A3 and 9E cytoplasms, whereas no differences were recorded in the F1 hybrids obtained with Mercury. The F1 hybrids obtained with CMS lines with the P614 genome showed heterosis for total chlorophyll content at the tillering stage. Overdominance of this trait was observed in hybrids with M35-1A cytoplasm; true heterosis exceeded analogous indices in 9E cytoplasm by 19.0 %, and the hypothetical heterosis, by 20.6 %. These data demonstrate that the application of new types of CMS-inducing cytoplasms allows raise of F1 hybrids with heterosis for chlorophyll content. Thus, such types can be used to increase hybrid productivity.

About the Authors

O. P. Kibalnik
All-Russia Research Institute for Sorghum and Maize “Rossorgo”, Saratov, Russia
Russian Federation


L. A. Elkonin
Agricultural Research Institute for the South-East Region of Russia, Saratov, Russia
Russian Federation


References

1. Адрианова Ю.Е., Тарчевский И.А. Хлорофилл и продуктивность растений. М., 2000.

2. Гужов Ю.Л., Фукс А., Валичек П. Селекция и семеноводство культивируемых растений. М., 1999.

3. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований). М., 2011.

4. Ермаков А.И. Методы биохимических исследований растений. Л., 1987.

5. Кибальник О.П., Эльконин Л.А. Влияние типов стерильных цитоплазм на содержание пигментов в листьях гибридов F1 зернового сорго. Докл. РАСХН. 2009;1:18-21.

6. Шимкевич А.М., Макаров В.Н., Голоенко И.М., Давыденко О.Г. Функциональное состояние фотосинтетического аппарата у аллоплазматических линий ячменя. Экол. генетика. 2006;4(2): 37-42.

7. Эльконин Л.А., Кожемякин В.В., Ишин А.Г. Использование новых ЦМС-индуцирующих цитоплазм для создания скороспелых линий сорго с мужской стерильностью. Докл. РАСХН. 1997;2:7-9.

8. Юрина Н.П., Одинцова М.С. Сигнальные системы растений. Пластидные сигналы и их роль в экспрессии ядерных генов. Физиол. растений. 2007;54(4):485-498.

9. Amiri Behzadi A., Satyavathi C., Singh S., Bharadwaj C., Singh M. Estimation of heterosis in diverse cytoplasmic male sterile sources of Pearl millet [Pennisetum glaucum (L.) R. Br.]. Ann. Agric. Res. 2012;33(4):220-227.

10. Aruna C., Shrotria P.K., Pahuja S.K., Umakanth A.V., Bhat B.V., Devender A.V., Patil J.V. Fodder yield and quality in forage sorghum: scope for improvement though diverse male sterile cytoplasms. Crop Pasture Sci. 2013;63(12):1114-1123. DOI: 10.1071/cp12215

11. Blanco N.E., Guinea-Díaz M., Whelan J., Strand А. Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014;369:1640. DOI: 10.1098/rstb.2013.0231

12. Bollivar D.W. Recent advances in chlorophyll biosynthesis. Photosynth. Res. 2006;89(3):1-22. DOI: 10.1007/s11120-006-9076-6

13. Chamola R., Balyan H., Bhat S. Effect of alien cytoplasm and fertility restorer genes on agronomic and physiological traits of Brassica juncea L. Czern. Plant Breeding. 2013;132(6):681-687. DOI: 10.1111/pbr.12080

14. Chi W., Sun X., Zhang L. Intracellular signaling from plastid to nucleus. Annu. Rev. Plant Biology. 2013;64:559-582. DOI: 10.1146/annurev-arplant-050312-120147

15. Delorme V., Keen C.L., Rai K.N., Leaver C.J. Cytoplasmic-nuclear male sterility in pearl millet: comparative RFLP and transcript analyses of isonuclear male-sterile lines. Theor. Appl. Genet. 1997;95(5):961-968. DOI: 10.1007/s001220050648

16. Eckhardt U., Grimm B., Hörtensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol. Biol. 2004;56(1):1-14. DOI: 10.1007/s11103-004-2331-3

17. Elkonin L.A., Kozhemyakin V.V., Ishin A.G. Nuclear-cytoplasmic interactions in fertility restoration in sorghum: alternative CMS-inducing cytoplasms. Int. Sorghum Millet Newslett. 1995;36:75-76.

18. Elkonin L.A., Kozhemyakin V.V., Ishin A.G. Comparative analysis of restoration of male-sterile (CMS)-inducing cytoplasms A3 and M35-1. Int. Sorghum Millet Newslett. 1997;38:29-30.

19. Frankel R., Scowcroft W.R., Whitfeld P.R. Chloroplast DNA variation in isonuclear male-sterile lines of Nicotiana. Mol. Gen. Genet. 1979;169:129-135.

20. Fujii S., Komatsu S., Toriyama K. Retrograde regulation of nuclear gene expression in CW-CMS of rice. Plant Mol. Biol. 2007;63:405-417. DOI: 10.1007/s11103-006-9097-8

21. Heng S., Wei C., Jing B., Wan Z., Wen J., Yi B., Ma C., Tu J., Fu T., Shen J. Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMSassociated gene orf288. BMC Genomics. 2014;15:322-334. DOI: 10.1186/1471-2164-15-322

22. Lopez-Juez E., Pyke K.A. Plastids unleashed: their development and their integration in plant development. Int. J. Dev. Biol. 2005;49(5/6): 557-577. DOI: 10.1387/ijdb.051997el

23. Masuda T., Fujita Y. Regulation and evolution of chlorophyll metabolism. Photochem. Photobiol. Sci. 2008;7(10):131-1149. DOI: 10.1039/b807210h

24. Moran J.L., Rooney W.L. Effect of cytoplasm on the agronomic performance of grain Sorghum hybrids. Crop Sci. 2003;43:777-781. DOI: 10.2135/cropsci2003.0777

25. Pogson B.J., Albrecht V. Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol. 2011;155:1545-1551. DOI: 10.1104/pp.110.170365

26. Pring D.R., Tang H.V., Schertz K.F. Cytoplasmic male sterility and organelle DNAs of sorghum. Eds C.S. Levings, I.K. Vasil. The Molecular Biology of Plant Mitochondria. Dordrecht: Kluwer Acad. Publ., 1995.

27. Reddy B.V.S., Ramesh S., Ortiz R. Genetic and cytoplasmic-nuclear male sterility in Sorghum. Plant Breeding Reviews. Ed. J. Janik. Hoboken, New Jersy: Willey & Sons, Inc. 2005;25:139-169. DOI: 10.1002/9780470650301.ch6

28. Satyavathi C., Begum S., Singh B., Unnikrishnan K., Bharadwaj C. Analysis of diversity among cytoplasmic male sterile sources and their utilization in developing F1 hybrids in Pearl millet [Pennisetum glaucum (R.) Br]. Indian J. Genet. Plant Breed. 2009;69(4): 352-360.

29. Tanaka Y., Tsuda M., Yasumoto K., Yamagishi H., Terachi T. A complete of Ogura-Type male-starile cytoplasm andits comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genomics. 2012;13:352-363. DOI: 10.1186/1471-2164-13-352

30. Tang S., Sun Y., Zang H., Gu Y., Lu J., Tian S., Yu B., Gu M. Comparison on the characteristics of the isonuclear alloplasmic CMS lines in japonica Rice. Chines J. Rice Sci. 2005;19(6):521-526.


Review

Views: 687


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)