Трансгенные растения как модели для изучения эпигенетической регуляции экспрессии генов

Полный текст:


Аннотация

Феномен потери экспрессии перенесенных генов в трансгенных растениях был обнаружен в начале 1990-х годов. Изучение данного явления показало зависимость частоты инактивации трансгенов от числа интегрированных копий в растительный геном, особенностей организации встройки (наличие дупликаций, векторных последовательностей и др.), места встраивания. Потеря экспрессии гена может происходить на транскрипционном или посттранскрипционном уровне, в большинстве случаев с участием малых интерферирующих РНК (siРНК). У растений наиболее распространенным эпигенетическим механизмом инактивации генов на уровне транскрипции является РНК-направленное метилирование ДНК. Уникальные для растений РНК-полимераза IV и РНК-полимераза V играют в нем важную роль. РНК-полимераза IV отвечает за синтез некодирующих транскриптов с гена-мишени, которые переводятся в двухцепочечную форму РНК-зависимой РНК-полимеразой и с помощью фермента Dicer разрезаются на siРНК. Они метилируются и транспортируются в эффекторный комплекс, основным компонентом которого является белок семейства Agronaute. РНК-полимераза V также считывает некодирующий транскрипт с гена-мишени, но он служит платформой для привлечения siРНК и последующего присоединения белков и ферментов, ответственных за метилирование ДНК и гистонов. Посттранскрипционная инактивация генов происходит в цитоплазме и связана со специфической деградацией эффекторным комплексом (siРНК и AGO-белок) мРНК, которая имеет участок, комплементарный siРНК. У растений кроме канонического механизма РНК-направленного метилирования ДНК существуют и другие варианты эпигенетической регуляции экспрессии генов, которые включают белки, принимающие участие в инактивации генов на посттранскрипционном уровне, специфические белки и другие типы малых РНК. В данном обзоре кратко рассмотрены известные на данный момент компоненты эпигенетической регуляции и сделан акцент на новые факты.

Об авторах

Т. В. Маренкова
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Е. В. Дейнеко
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет», Томск, Россия
Россия


Список литературы

1. Ванюшин Б.Ф. Метилирование ДНК у растений: эпигенетический контроль за генетическими функциями. Эпигенетика. Ред. С.М. Закиян, В.В. Власов, Е.В. Дементьева. Новосибирск: Изд-во СО РАН, 2012.

2. Дорохов Ю.Л. «Умолкание» генов у растений. Молекуляр. биология. 2007;41(4):579-592.

3. Логинова Д.Б., Меньшанов П.Н., Дейнеко Е.В. Анализ мозаичного проявления nptII-гена у контрастных по мозаицизму трансгенных растений табака. Генетика. 2012;48:1280-1286.

4. Маренкова (Новоселя) Т.В., Дейнеко Е.В., Шумный В.К. Мозаичный характер проявления гена nptII у трансгенных растений табака Nu 21. Генетика. 2007;43(7):943-954.

5. Маренкова Т.В., Дейнеко Е.В. Инактивирование генов у растений на уровне транскрипции. Генетика. 2010;46(5):581-592.

6. Agius F., Kapoor A., Zhu J.K. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc. Natl Acad. Sci. USA. 2006;103:11796-11801.

7. Bastar M.T., Luthar Z., Skof S., Bohanec B. Quantitative determination of mosaic GFP gene expression in tobacco. Plant Cell Rep. 2004;22:939-944.

8. Böhmdorfer G., Rowley M.J., Kuciński J., Zhu Y., Amies I., Wierzbicki A.T. RNA-directed DNA methylation requires stepwise binding of silencing factors to long non-coding RNA. Plant J. 2014;79(2):181-191. DOI: 10.1111/tpj.12563

9. Charrier B., Scollan C., Ross S., Zubko E., Meyer P. Co-silencing of homologous transgenes in tobacco. Mol. Breeding. 2000;6:407-419.

10. Day C.D., Lee E., Kobayashi J., Holappa L.D., Albert H., Ow D.W. Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Gene. Dev. 2000;14:2869-2880.

11. De Paoli E., Dorantes-Acosta A., Zhai J., Accerbi M., Jeong D.H., Park S., Meyers B.C., Jorgensen R.A., Green P.J. Distinct extremely abundant siRNAs associated with cosuppression in petunia. RNA. 2009;15:1965-1970. DOI: 10.1261/rna.1706109

12. Dinh T.T., Gao L., Liu X., Li D., Li S., Zhao Y., O’Leary M., Le B., Schmitz R.J., Manavella P., Li S., Weigel D., Pontes O., Ecker J.R., Chen X. DNA topoisomerase 1α promotes transcriptional silencing of transposable elements through DNA methylation and histone lysine 9 dimethylation in Arabidopsis. PLOS Genet. 2014;10: e1004446. DOI: 10.1371/journal.pgen.1004446

13. Dolgosheina E.V., Morin R.D., Aksay G., Sahinalp S.C., Magrini V., Mardis E.R., Mattsson J., Unrau P.J. Conifers have a unique small RNA silencing signature. RNA. 2008;14:1508-1515. DOI: 10.1261/rna.1052008

14. Gao Z., Liu H.L., Daxinger L., Pontes O., He X., Qian W., Lin H., Xie M., Lorkovic Z.J., Zhang S., Miki D., Zhan X., Pontier D., Lagrange T., Jin H., Matzke A.J., Matzke M., Pikaard C.S., Zhu J.K. An RNA polymerase II- and AGO4-associated protein acts in RNAdirected DNA methylation. Nature. 2010;465(7294):106-109. DOI: 10.1038/nature09025

15. Groth M., Stroud H., Feng S., Greenberg M.V., Vashisht A.A., Wohlschlegel J.A., Jacobsen S.E., Ausin I. SNF2 chromatin remodeler-family proteins FRG1 and -2 are required for RNA-directed DNA methylation. Proc. Natl Acad. Sci. USA. 2014;111:17666-17671. DOI: 10.1073/pnas.1420515111

16. Habu Y. Epigenetic silencing of endogenous repetitive sequences by MORPHEUS’ MOLECULE1 in Arabidopsis thaliana. Epigenetics. 2010;5:562-565.

17. Heilersig H.J., Loonen A., Bergervoet M., Wolters A.M., Visser R.G. Post-transcriptional gene silencing of GBSSI in potato: effects of size and sequence of the inverted repeats. Plant Mol. Biol. 2006;60:647-662. DOI: 10.4161/epi.5.7.12518

18. Herr A.J., Jensen M.B., Dalmay T., Baulcombe D.C. RNA polymerase IV directs silencing of endogenous DNA. Science. 2005;308(5718):118-120.

19. Huang C., Zhu J. RNA splicing factors and RNA-directed DNA methylation. Biology (Basel). 2014;3:243-254. DOI: 10.3390/biology3020243

20. Huang Y., Kendall T., Mosher R.A. Pol IV-dependent siRNAproduction is reduced in Brassica rapa. Biology (Basel). 2013;2:1210-1223. DOI: 10.3390/biology2041210

21. Jakowitsch J., Papp I., Moscone E.A., van der Winden J., Matzke M.A., Matzke A.J.M. Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J. 1999;17:131-140.

22. Johnson L.M., Du J., Hale C.J., Bischof S., Feng S., Chodavarapu R.K., Zhong X., Marson G., Pellegrini M., Segal D.J., Patel D.J., Jacobsen S.E. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature. 2014;507:124-128. DOI: 10.1038/nature12931

23. Khaitová L.C., Fojtová M., Křížová K., Lunerová J., Fulneček J., Depicker A., Kovařík A. Paramutation of tobacco transgenes by small RNA-mediated transcriptional gene silencing. Epigenetics. 2011;6:650-660.

24. Law J.A., Du J., Hale C.J., Feng S., Krajewski K., Palanca A.M., Strahl B.D., Patel D.J., Jacobsen S.E. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature. 2013;498:385-389. DOI: 10.1038/nature12178

25. Liu Z.W., Shao C.R., Zhang C.J., Zhou J.X., Zhang S.W., Li L., Chen S., Huang H.W., Cai T., He X.J. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. Proc. Natl Acad. Sci. USA. 2014;111: 7474-7479. DOI: 10.1371/journal.pgen.1003948

26. Luo C., Durgin B.G., Watanabe N., Lam E. Defining the functional network of epigenetic regulators in Arabidopsis thaliana. Mol. Plant. 2009;2:661-674. DOI: 10.1093/mp/ssp017

27. Lunerová-Bedrichová J., Bleys A., Fojtová M., Khaitová L., Depicker A., Kovařík A. Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. Plant J. 2008;54(6):1049-1062. DOI: 10.1111/j.1365-313X. 2008.03475.x

28. Ma C., Mitra A. Intrinsic direct repeats generate consistent post-transcriptional gene silencing in tobacco. Plant J. 2002;31:37-49.

29. Mari-Ordonez A., Marchais A., Etcheverry M., Martin A., Colot V., Voinnet O. Reconstructing de novo silencing of an active plant retrotransposon. Nat. Genet. 2013;45:1029-1039. DOI: 10.1038/ng.2703

30. Matzke A.J.M., Neuhuber F., Park Y.-D., Ambros P.F., Matzke M.A. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 1994;244:219-229.

31. Matzke M.A., Mosher R.A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 2014;15:394-408. DOI: 10.1038/nrg3683

32. Mette M.F., Aufsatz W., van der Winden J., Matzke M.A., Matzke A.J.M. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2000;19:5194-5201.

33. Meyer P. Transgenes and their contributions to epigenetic research. Int. J. Dev. Biol. 2013;57:509-515. DOI: 10.1387/ijdb.120254pm

34. Mosher R.A., Schwach F., Studholme D., Baulcombe D.C. Pol IVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proc. Natl Acad. Sci. USA. 2008;105: 3150. DOI: 10.1073/pnas.0709632105

35. Mourrain P., van Blokland R., Kooter J.M., Vaucheret H. A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production. Planta. 2007;225:365-379.

36. Napoli C., Lemieux C., Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2:279-289.

37. Nuthikattu S., McCue A.D., Panda K., Fultz D., De Fraia C., Thomas E.N., Slotkin R.K. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs. Plant Physiol. 2013;162:116-1131. DOI: 10.1104/pp.113.216481

38. Park Y.-D., Papp I., Moscone E.A., Iglesias V.A., Vaucheret H., Matzke A.J.M. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J. 1996;9:183-194.

39. Penterman J., Uzawa R., Fischer R.L. Genetic interactions between DNA demethylation and methylation in Arabidopsis. Plant Physiol. 2007;145:1549-1557.

40. Pontier D., Picart C., Roudier F., Garcia D., Lahmy S., Azevedo J., Alart E., Laudié M., Karlowski W.M., Cooke R., Colot V., Voinnet O., Lagrange T. NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. Mol. Cell. 2012;48:121-132. DOI: 10.1016/j.molcel.2012.07.027

41. Pooggin M. How can plant DNA viruses evade siRNA-directed DNA methylation and silencing? Int. J. Mol. Sci. 2013;14:15233-15259. DOI: 10.3390/ijms140815233

42. Sallaud C., Meynard D., van Boxtel J., Gay C., Bès M., Brizard J.P., Larmande P., Ortega D., Raynal M., Portefaix M., Ouwerkerk P.B., Rueb S., Delseny M., Guiderdoni E. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor. Appl. Genet. 2003;106:1396-1408.

43. Smith L.M., Pontes O., Searle I., Yelina N., Yousafzai F.K., Herr A.J., Pikaard C.S., Baulcombe D.C. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell. 2007;19:1507-1521.

44. Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 2006;20:759-771.

45. Vaucheret H. Promoter-dependent trans-inactivation in transgenic tobacco plants: kinetic aspects of gene silencing and gene reactivation. C.R. Acad. Sci. Paris. 1994;316:310-323.

46. Velásquez A.C., Chakravarthy S., Martin G.B. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. Vis Exp. 2009;28:pii: 1292. DOI: 10.3791/1292

47. Wan L.C., Wang F., Guo X., Lu S., Qiu Z., Zhao Y., Zhang H., Lin J. Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing. BMC Plant Biology. 2012;12:146. DOI: 10.1186/1471-2229-12-146

48. Wassenegger M., Heimes S., Riedel L., Sanger H. RNA-directed de novo methylation of genomic sequences in plants. Cell. 1994;76: 567-576.

49. Wierzbicki A.T., Cocklin R., Mayampurath A., Lister R., Rowley M.J., Gregory B.D., Ecker J.R., Tang H., Pikaard C.S. Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome. Genes Dev. 2012;26:1825-1836. DOI: 10.1101/gad.197772.112

50. Wu L., Zhou H., Zhang Q., Zhang J., Ni F., Liu C., Qi Y. DNA methylation mediated by a microRNA pathway. Mol. Cell. 2010;38:465-475. DOI: 10.1016/j.molcel.2010.03.008

51. Yang Z., Ebright W.U., Yu B., Chen X. HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucl. Acids Res. 2006;34:667-675.

52. You W., Lorkovic Z.J., Matzke A.J., Matzke M. Interplay among RNA polymerases II, IV and V in RNA-directed DNA methylation at a low copy transgene locus in Arabidopsis thaliana. Plant Mol. Biol. 2013;82:85-96. DOI: 10.1007/s11103-013-0041-4

53. Zhang H., Tang K., Qian W., Duan C.G., Wang B., Zhang H., Wang P., Zhu X., Lang Z., Yang Y., Zhu J.K. An Rrp6-like protein positively regulates noncoding RNA levels and DNA methylation in Arabidopsis. Mol. Cell. 2014;54:418-430. DOI: 10.1016/j.molcel.2014.03.019

54. Zhong X., Hale C.J., Law J.A., Johnson L.M., Feng S., Tu A., Jacobsen S.E. DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat. Struct. Mol. Biol. 2012;19:870-875. DOI: 10.1038/nsmb.2354

55. Zhu Y., Rowley M.J., Bohmdorfer G., Wierzbicki A.T.A. SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol. Cell. 2013;49:298-309. DOI: 10.1016/j.molcel.2012.11.011


Дополнительные файлы

Просмотров: 157

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)