Chickpea diversity driven by transposon insertion polymorpism
https://doi.org/10.18699/vjgb-25-08
Abstract
Chickpea is the second most important legume crop, which is used as a food by people in different parts of the world due to its high nutritive value. Omics technologies have revolutionized the characterization of chickpea genetic diversity by considering single-nucleotide polymorphisms, while structural variants and transposons have been overlooked. The specific contribution of transposons to the phenotypic diversification of crop species is still poorly documented, therefore its characterization is important. We focused on landraces collected before the “green revolution”, as they are a valuable source of species diversity and can be used to broaden the genetic base of modern cultivars. Analyzing 190 chickpea genomes, we found 42,324 new transposon insertion sites from 83 families and showed that such sites are highly polymorphic. Most insertions were caused by mobilization of retrotransposons (67 % of insertions); among DNA transposons, the highest number of insertions was found for the superfamilies MuDR, PIF, hAT, CMC, and TcMar. We also demonstrated an uneven distribution of insertion sites along chromosomes. Analysis of the localization of transposon insertion sites relative to genes and their structural elements has shown that the largest number of insertions in all transposon superfamilies falls on introns and the smallest, on exons. We also showed that transposon insertion sites, which until recently have been overlooked by population genomics, are an important factor that diversifies phenotypes and can be used in GWAS as markers replacing SNPs. Comparative analysis of landraces collected in different geographic regions showed that the Ethiopian accessions have many unique transposon insertion sites. Our results highlight the unique role of transposon mobilization in chickpea diversification and have important implications for breeding improved chickpea varieties adapted to global climate change.
About the Authors
V. A. StaninRussian Federation
St. Petersburg
М. A. Duk
Russian Federation
St. Petersburg
А. A. Kanapin
Russian Federation
St. Petersburg
А. A. Samsonova
Russian Federation
St. Petersburg
S. Yu. Surkova
Russian Federation
St. Petersburg
М. G. Samsonova
Russian Federation
St. Petersburg
References
1. Abbo S., Berger J., Turner N.C. Viewpoint: Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol. 2003;30(10):10811087. doi: 10.1071/fp03084
2. AceitunoValenzuela U., MicolPonce R., Ponce M.R. Genomewide analysis of CCHCtype zinc finger (ZCCHC) proteins in yeast, Arabidopsis, and humans. Cell Mol Life Sci. 2020;77(20):3991-4014. doi: 10.1007/s00018020035187
3. Akakpo R., Carpentier M., Hsing Y.I., Panaud O. The impact of transposable elements on the structure, evolution and function of the rice genome. New Phytol. 2020;226(1):4449. doi: 10.1111/nph.16356
4. Alexander D.H., Novembre J., Lange K. Fast modelbased estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655-1664. doi: 10.1101/gr.094052.109
5. Alioto T., Alexiou K.G., Bardil A., Barteri F., Castanera R., Cruz F., Dhingra A., Duval H., Fernández i Martí Á., Frias L., Galán B., García J.L., Howad W., GómezGarrido J., Gut M., Julca I., Morata J., Puigdomènech P., Ribeca P., Rubio Cabetas M.J., Vlasova A., Wirthensohn M., GarciaMas J., Gabaldón T., Casacuberta J.M., Arús P. Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. Plant J. 2020;101(2):455-472. doi: 10.1111/tpj.14538
6. Binder B.M. Ethylene signaling in plants. J Biol Chem. 2020;295(22): 77107725. doi: 10.1074/jbc.rev120.010854
7. Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S., Mager D.L., Feschotte C. Ten things you should know about transposable elements. Genome Biol. 2018;19(1):199. doi: 10.1186/s13059-018-1577-z
8. Cai X., Lin R., Liang J., King G.J., Wu J., Wang X. Transposable element insertion: a hidden major source of domesticated phenotypic variation in Brassica rapa. Plant Biotechnol J. 2022;20(7):1298-1310. doi: 10.1111/pbi.13807
9. Catlin N.S., Josephs E.B. The important contribution of transposable elements to phenotypic variation and evolution. Curr Opin Plant Biol. 2022;65:102140. doi: 10.1016/j.pbi.2021.102140
10. de la Peña T.C., Pueyo J.J. Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agron Sustain Dev. 2012;32:6591. doi: 10.1007/s1359301100242
11. Domínguez M., Dugas E., Benchouaia M., Leduque B., Jiménez Gómez J.M., Colot V., Quadrana L. The impact of transposable elements on tomato diversity. Nat Commun. 2020;11(1):4058. doi: 10.1038/s41467020178742
12. Duk M.A., Kanapin A.A., Bankin M.P., Samsonova M.G. Using the IIIVmrMLM method to confirm and search new genomewide associations in chickpea. Biofizika = Biophysics. 2024;69(6):1263-1278. doi: 10.31857/S0006302924060126 (in Russian)
13. Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Clim. 2005;25(15):19651978. doi: 10.1002/joc.1276
14. Igolkina A.A., Noujdina N.V., Vishnyakova M., Longcore T., von Wett berg E., Nuzhdin S.V., Samsonova M.G. Historical routes for diversification of domesticated chickpea inferred from landrace genomics. Mol Biol Evol. 2023;40:msad110. doi: 10.1093/molbev/msad110
15. Jain M., Misra G., Patel R.K., Priya P., Jhanwar S., Khan A.W., Shah N., Singh V.K., Garg R., Jeena G., Yadav M., Kant C., Sharma P., Yadav G., Bhatia S., Tyagi A.K., Chattopadhyay D. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J. 2013;74(5):715729. doi: 10.1111/tpj.12173
16. Jiang Z., Wang M., Nicolas M., Ogé L., PérezGarcia M.D., Crespel L., Li G., Ding Y., Le Gourrierec J., Grappin P., Sakr S. Glucose-6-phosphate dehydrogenases: the hidden players of plant physiology. Int J Mol Sci. 2022;23(24):16128. doi: 10.3390/ijms232416128
17. Kaloki P., Devasirvatham V., Tan D.K.Y. Chickpea abiotic stresses: combating drought, heat and cold. In: Abiotic and Biotic Stress in Plants. IntechOpen, 2019. doi: 10.5772/intechopen.83404
18. Kang M., Wu H., Liu H., Liu W., Zhu M., Han Y., Liu W., Song C.C.Y., Tan L., Yin K., Zhao Y., Yan Z., Lou S., Zan Y., Liu J. The pan genome and local adaptation of Arabidopsis thaliana. Nat Commun. 2023;14(1):6259. doi: 10.1038/s41467023420294
19. Kofler R., Pandey R.V., Schlotterer C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics. 2011;27(24):3435-3436. doi: 10.1093/bioinformatics/btr589
20. Kofler R., GómezSánchez D., Schlötterer C. PoPoolationTE2: comparative population genomics of transposable elements using Pool-Seq. Mol Biol Evol. 2016;33(10):27592764. doi: 10.1093/molbev/msw137
21. Li H., Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754-1760. doi: 10.1093/bioinformatics/btp324
22. Li M., Zhang Y.W., Xiang Y., Liu M.H., Zhang Y.M. IIIVmrMLM: the R and C++ tools associated with 3VmrMLM, a comprehensive GWAS method for dissecting quantitative traits. Mol Plant. 2022a; 15(8):12511253. doi: 10.1016/j.molp.2022.06.002
23. Li M., Zhang Y.W., Zhang Z.C., Xiang Y., Liu M.H., Zhou Y.H., Zuo J.F., Zhang H.Q., Chen Y., Zhang Y.M. A compressed variance component mixed model for detecting QTNs and QTNby environment and QTNbyQTN interactions in genomewide association studies. Mol Plant. 2022b;15(4):630650. doi: 10.1016/j.molp.2022.02.012
24. Mann H.B., Whitney D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statistics. 1947;18(1):5060. doi: 10.1214/aoms/1177730491
25. Mhiri C., Borges F., Grandbastien M.A. Specificities and dynamics of transposable elements in land plants. Biology. 2022;11(4):488. doi: 10.3390/biology11040488
26. Mokhtar M.M., Alsamman A.M., Abd-Elhalim H.M., Allali A.E. CicerSpTEdb: a web-based database for high-resolution genomewide identification of transposable elements in Cicer species. PLoS One. 2021;16(11):e0259540. doi: 10.1371/journal.pone.0259540
27. Niu X.M., Xu Y.C., Li Z.W., Bian Y.T., Hou X.H., Chen J.F., Zou Y.P., Jiang J., Wu Q., Ge S., Balasubramanian S., Guo Y.L. Transposable elements drive rapid phenotypic variation in Capsella rubella. Proc Natl Acad Sci USA. 2019;116(14):6908-6913. doi: 10.1073/pnas.1811498116
28. Pulido M., Casacuberta J.M. Transposable element evolution in plant genome ecosystems. Curr Opin Plant Biol. 2023;75:102418. doi: 10.1016/j.pbi.2023.102418
29. Qiu Y., O’Connor C.H., Della Coletta R., Renk J.S., Monnahan P.J., Noshay J.M., Liang Z., Gilbert A., Anderson S.N., McGaugh S.E., Springer N.M., Hirsch C.N. Whole-genome variation of transposable element insertions in a maize diversity panel. G3 (Bethesda). 2021;11(10):jkab238. doi: 10.1093/g3journal/jkab238
30. Quesneville H. Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mob DNA. 2020;11:28. doi: 10.1186/s13100-020-00223-x
31. Radkova M., Revalska M., Kertikova D., Iantcheva A. Zinc finger CCHC-type protein related with seed size in model legume species Medicago truncatula. Biotechnol Biotechnol Equip. 2019;33(1):278-285. doi: 10.1080/13102818.2019.1568914
32. Schrader L., Schmitz J. The impact of transposable elements in adaptive evolution. Mol Ecol. 2019;28(6):15371549. doi: 10.1111/mec.14794
33. Sokolkova A., Bulyntsev S.V., Chang P.L., Carrasquilla-Garcia N., Igolkina A.A., Noujdina N.V., von Wettberg E., Vishnyakova M.A., Cook D.R., Nuzhdin S.V., Samsonova M.G. Genomic analysis of Vavilov’s historic chickpea landraces reveals footprints of environmental and human selection. Int J Mol Sci. 2020;21(11):3952. doi: 10.3390/ijms21113952
34. Sultana T., Zamborlini A., Cristofari G., Lesage P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet. 2017;18(5):292308. doi: 10.1038/nrg.2017.7
35. Varshney R., Song C., Saxena R., Azam S., Yu S., Sharpe A.G., Cannon S., … Singh K.B., Datta S.K., Jackson S.A., Wang J., Cook D.R. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol. 2013;31(3):240-246. doi: 10.1038/nbt.2491
36. Varshney R., Thudi M., Roorkiwal M., He W., Upadhyaya H.D., Yang W., Bajaj P., … Sutton T., von Wettberg E., Vigouroux Y., Xu X., Liu X. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat Genet. 2019;51(5):857864. doi: 10.1038/s41588-019-0401-3
37. Vourlaki I.-T., Castanera R., Ramos-Onsins S.E., Casacuberta J.M., PérezEnciso M. Transposable element polymorphisms improve prediction of complex agronomic traits in rice. Theor Appl Genet. 2022;135(9):32113222. doi: 10.1007/s00122022041802
38. Weiß L., Gaelings L., Reiner T., Mergner J., Kuster B., Fehér A., Hensel G., Gahrtz M., Kumlehn J., Engelhardt S., Hückelhoven R. Posttranslational modification of the RHO of plants protein RACB by phosphorylation and cross-kingdom conserved ubiquitination. PLoS One. 2022;17(3):e0258924. doi: 10.1371/journal.pone.0258924
39. Wuriyanghan H., Zhang B., Cao W.H., Ma B., Lei G., Liu Y.F., Wei W., Wu H.J., Chen L.J., Chen H.W., Cao Y.R., He S.J., Zhang W.K., Wang X.J., Chen S.Y., Zhang J.S. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell. 2009;21(5):14731494. doi: 10.1105/tpc.108.065391
40. Yan H., Haak D.C., Li S., Huang L., Bombarely A. Exploring transposable element-based markers to identify allelic variations underlying agronomic traits in rice. Plant Commun. 2022;3(3):100270. doi: 10.1016/j.xplc.2021.100270
41. Zhao Y., Li X., Xie J., Xu W., Chen S., Zhang X., Liu S., Wu J., El-Kassaby Y.A., Zhang D. Transposable elements: distribution, polymorphism, and climate adaptation in populus. Front Plant Sci. 2022; 13:814718. doi: 10.3389/fpls.2022.814718