Evaluation of the biodiversity of arbuscular mycorrhizal fungi during regenerative succession in quarries
https://doi.org/10.18699/vjgb-25-09
Abstract
Arbuscular mycorrhizal fungi (AMF) play a key role in the regenerative successions of plant communities after anthropogenic disturbances, particularly in quarries. AMF help plants with water and mineral nutrition, contributing to the restoration rate of vegetation cover.
The research is aimed to study the biodiversity of AMF using molecular genetic methods at different stages of overgrowth of two quarries in the Leningrad region.
Molecular genetic identification of fungi was carried out using Illumina MiSeq analysis of the ITS1 and ITS2 regions as barcodes for the identification of operational taxonomic units (OTUs) with species-level identification. An adapted and error-checked AMF genetic sequence database from NCBI was used as a reference. The study applied an optimized nucleic acid isolation technique for sandy soils. The results showed maximum AMF biodiversity at the initial stages of overgrowth – pioneer and grass stages – with minimum diversity observed at the shrub stage, where it decreased by five times. At the forest stage, the biodiversity of AMF was almost restored to the level seen at the grass stage. It has been shown that the biodiversity and species composition of AMF can vary greatly between the stages of regenerative succession and probably depends primarily on the biodiversity of grasses, with which AMF most effectively enter into symbiotic relationships. The analysis showed a reliable negative correlation between the number of AMF species and the number of woody plant species. Such studies can aid in understanding how plant-fungal symbiosis develops in regenerative successions and which AMF most effectively contribute to vegetation cover restoration.
About the Authors
A. A. KryukovRussian Federation
St. Petersburg; Pushkin
A. P. Yurkov
Russian Federation
St. Petersburg; Pushkin
A. O. Gorbunova
Russian Federation
St. Petersburg; Pushkin
T. R. Kudriashova
Russian Federation
St. Petersburg; Pushkin
A. I. Gorenkova
Russian Federation
St. Petersburg; Pushkin
Y. V. Kosulnikov
Russian Federation
St. Petersburg; Pushkin
Y. V. Laktionov
Russian Federation
St. Petersburg; Pushkin
References
1. Aikio S. Plant Adaptive Strategies in Relation to Variable Resource Availability, Soil Microbial Processes and Ecosystem Development. Acad. diss. Oulu, 2000
2. Akhmetzhanova A.A., Soudzilovskaia N.A., Onipchenko V.G., Cornwell W.K., Agafonov V.A., Selivanov I.A., Cornelissen J.H.C. A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union. Ecology. 2012; 93(2):689-690. doi: 10.1890/11-1749.1
3. Edgar R.C. Search and сlustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460-2461. doi: 10.1093/bioinformatics/btq461
4. Ganugi P., Masoni A., Pietramellara G., Benedettelli S. A review of studies from the last twenty years on plant-arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy. 2019; 9(12):840. doi: 10.3390/agronomy9120840
5. Gorbunova A.O., Sumina O.I. Dynamics of mycorrhization in some plant species during progressive succession on sand quarries (Leningrad region). Botanicheskii Zhurnal = Botanical Journal. 2021; 106(1):22-42. doi: 10.31857/S0006813621010051 (in Russian)
6. Janowski D., Leski T. Factors in the distribution of mycorrhizal and soil fungi. Diversity. 2022;14(12):1122. doi: 10.3390/d14121122
7. Jeffries P., Barea J.M. Arbuscular mycorrhiza – a key component of sustainable plant-soil ecosystems. In: Hock B. (Ed.) The Mycota. Vol. 9. Berlin; Heidelberg: Springer, 2001;95-113. doi: 10.1007/978-3-662-07334-6_6
8. Jumpponen A., Trappe J.M., Cazares E. Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza. 2012;12: 43-49. doi: 10.1007/s00572-001-0152-7
9. Kiers E.T., Duhamel M., Beesetty Y., Mensah J.A., Franken O., Verbruggen E., Fellbaum C.R., Kowalchuk G.A., Hart M.M., Bago A., Palmer T.M., West S.A., Vandenkoornhuyse P., Jansa J., Bucking H. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333(6044):880-882. doi: 10.1126/science.1208473
10. Kryukov A.A., Gorbunova A.O., Machs E.M., Mikhaylova Y.V., Rodionov A.V., Zhurbenko P.M., Yurkov A.P. Perspectives of using Illumina MiSeq for identification of arbuscular mycorrhizal fungi. Vavilov J Genet Breed. 2020;24(2):158-167. doi: 10.18699/VJ19.38-o
11. Lambers H., Raven J.A., Shaver G.R., Smith S.E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol. 2008;23(2): 95-103. doi: 10.1016/j.tree.2007.10.008
12. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning. A Laboratory Manual. New York: Cold Spring Harbor Laboratory, 1982
13. Neuenkamp L., Zobel M., Koorem K., Jairus T., Davison J., Öpik M., Vasar M., Moora M. Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecol Lett. 2021;24(3):426-437. doi: 10.1111/ele.13656
14. Öpik M., Davison J., Moora M., Zobel M. DNA based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany. 2014;92(2):135-147. doi: 10.1139/cjb-20130110
15. Pinaev A.G., Kichko A.A., Aksenova T.S., Safronova V.I., Kozhenkova E.V., Andronov E.E. RIAM: a universal accessible protocol for the isolation of high purity DNA from various soils and other humic substances. Methods Protoc. 2022;5(6):99. doi: 10.3390/mps5060099
16. Senés-Guerrero C., Schüßler A. A conserved arbuscular mycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers. 2015;77(1):317-333. doi: 10.1007/s13225-015-0328-7
17. Smith S.E., Read D.J. Mycorrhizal Symbiosis. Cambridge: Academic Press, 2008
18. Spatafora J.W., Chang Y., Benny G.L., Lazarus K., Smith M.E., Berbee M.L., Bonito G., Corradi N., Grigoriev I., Gryganskyi A., James T.Y., O’Donnell K., Roberson R.W., Taylor T.N., Uehling J., Vilgalys R., White M.M., Stajich J.E. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2017;108(5):1028-1046. doi: 10.3852/16-042
19. Sumina O.I., Vlasov D.Y., Dolgova L.L., Safronova E.V. Formation features of the micromycete communities in overgrown sand quarries of the North of Western Siberia. Vestnik SPbGU. Seriya 3. Biologiya = Vestnik of Saint Petersburg University. 2010;2:84-90 (in Russian)
20. van der Heijden M.G.A., Klironomos J.N., Ursic M., Moutoglis P., Streit wolf-Engel R., Boller T., Wiemken A., Sanders I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 1998;396:72-75. doi: 10.1038/23932
21. van der Heijden M.G.A., Martin F.M., Selosse M.-A., Sanders I.R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205:1406-1423. doi: 10.1111/nph.13288
22. Wang B., Qiu Y.L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16:299-363. doi: 10.1007/s00572-005-0033-6
23. Wu Q.-S. (Ed.) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Singapore: Springer, 2017. doi: 10.1007/978-981-10-4115-0
24. Yurkov A.P., Kryukov A.A., Gorbunova A.O., Kudriashova T.R., Kovalchuk A.I., Gorenkova A.I., Bogdanova E.M., Laktionov Y.V., Zhurbenko P.M., Mikhaylova Y.V., Puzanskiy R.K., Bagrova T.N., Yakhin O.I., Rodionov A.V., Shishova M.F. Diversity of arbuscular mycorrhizal fungi in distinct ecosystems of the North Caucasus, a temperate biodiversity hotspot. J Fungi. 2024;10(1):11. doi: 10.3390/jof10010011
25. Zobel M., Öpik M. Plant and arbuscular mycorrhizal fungal (AMF) communities – which drives which? J Veg Sci. 2014;25(5):1133-1140. doi: 10.1111/jvs.12191