Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Molecular-cytogenetic analysis of triticale and wheat lines with introgressions of the tribe Triticeae species genetic material

https://doi.org/10.18699/VJ15.072

Abstract

There are a number of problems in selection of cultivated cereals associated with the requirements to create forms with resistance to diseases, pests and unfavorable environmental conditions. The genetic diversity of genes for resistance to biotic and abiotic stresses can be increased by means of the gene pool of wild and cultivated wheat relatives. To improve agronomic traits in cereals, we have developed common wheat hybrid lines T. aestivum/ T. durum, T. aestivum/ T. dicoccoides and triticale lines by crossing hexaploid triticale with common wheat forms with the substitution of genome D for the geno­me of diploid Aegilops species. The aim of the study was to identify the lines of common wheat and hexaploid triticale with alien introgression using cytological and molecular-genetic analyses and evaluation of their cytological stability. Comparative analysis of the structure of chromosomes by GISH and FISH methods, microsatellite- and chromosome-specific markers revealed that hybridization of triticale with genome-substitution forms of wheat leads to the reorganization of the genome, including both the introgression of foreign material and wheat chromosome rearrangements, which lead to new combinations of genetic loci. The efficiency of wheat microsatellite markers to characterize of the T. aestivum/ T. durum, T. aestivum/ T. dicoccum interspecific hybrid lines was shown. From 4 to 12 translocations of different lengths from T. durum and T. dicoccum were identified in the chromosomes of A and В genomes in the hybrid lines. Meiotic stability of wheat and triticale hybrids was found. It creates prerequisites for preservation of alien genetic material in subsequent generations.

About the Authors

O. A. Orlovskaya
Institute of Genetics and Cytology of NAS of Belarus, Minsk, Belarus
Belarus


I. N. Leonova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


I. G. Adonina
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


E. A. Salina
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


L. V. Khotyleva
Institute of Genetics and Cytology of NAS of Belarus, Minsk, Belarus
Belarus


V. K. Shumny
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Адонина И.Г., Орловская О.А., Терещенко О.Ю., Корень Л.В., Хотылева Л.В., Шумный В.К., Салина Е.А. Формирование хозяйственно ценных признаков у линий гексаплоидных тритикале с интрогрессиями от дикорастущих видов эгилопсов в зависимости от геномного состава. Генетика. 2011;47(4):516-526.

2. Жиров Е.Г. Геном пшеницы: исследование и перестройка: Автореф. дис. … д-ра биол. наук. Киев, 1990.

3. Леонова И.Н., Бадаева Е.Д., Орловская О.А., Родер М.С., Хотылева Л.В., Салина Е.А., Шумный В.К. Сравнительная характеристика гибридных линий Triticum aestivum/Triticum durum и Triticum aestivum/Triticum dicoccum по геномному составу и устойчивости к грибным болезням в различных экологических условиях. Генетика. 2013;49(11):1276-1283.

4. Леонова И.Н., Добровольская О.Б., Каминская Л.Н., Адонина И.Г., Корень Л.В., Хотылева Л.В., Салина Е.А. Молекулярный анализ линий тритикале, содержащих различные системы Vrn генов, с помощью микросателлитных маркеров и гибридизации in situ. Генетика. 2005;41(9):1236-1243.

5. Леонова И.Н., Салина Е.А., Орловская О.А., Хотылева Л.В., Шумный В.К. Использование SSR-маркеров для характеристики гибридных линий мягкой пшеницы с генетическим материалом T. durum и T. dicoccum. Молекуляр. и прикл. генетика. 2014;18: 61-69.

6. Орловская О.А., Каминская Л.Н., Хотылева Л.В. Интрогрессия генетического материала эгилопса в геном гексаплоидных тритикале. Генетика. 2007;43(3):363-369.

7. Орловская О.А., Корень Л.В., Хотылева Л.В. Морфологический анализ гибридов пшеницы, созданных посредством отдаленной гибридизации в трибе Triticeae. Весці НАН Беларусі. Сер. біял. навук. 2011;3:29-33.

8. Ригин Б.В., Орлова И.Н. Пшенично-ржаные амфидиплоиды. Л.: Колос, 1977.

9. Adonina I.G., Orlovskaya O.A., Tereshchenko O.Yu., Koren L.V., Khotyleva L.V., Salina E.A. Introgression of Aegilops genetic material into the genome of hexaploid triticale and influence of genome structure on formation of economic-valuable traits. Plant genetics, genomics, and biotechnology: Proc. Intern. Conf. 7–10 June. Novosibirsk, 2010.

10. Adonina I.G., Orlovskaya O.A., Tereshchenko O.Yu., Koren L.V., Khotyleva L.V., Shumny V.K., Salina E.A. Development of commercially valuable traits in hexaploid Triticale lines with Aegilops introgressions as dependent on the genome composition. Rus. J. Genet. 2011;47(4):449-457. DOI: 10.1134/S1022795411040028

11. Adonina I.G., Salina E.A., Pestsova E.G., Röder M.S. Transferability of wheat microsatellites to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome. Genome. 2005;48(6):959-970. DOI: 10.1139/g05-072

12. Arseniuk E., Gruszecka D ., Tarkowski Cz. Analysis of Stagonospora nodorum blotch resistance in hybrids of triticale, wheat, rye, Aegilops spp., Agrotriticum sp., and Dasypyrum sp. Proc. 4th Int. Triticale Symp. Alberta, 26–31 July 1998;1:303-311.

13. Badaeva E.D., Dedkova O.S., Gay G., Pukhalskyi V.A., Zelenin A.V., Bernard S., Bernard M. Chromosomal rearrangements in wheat: their types and distribution. Genome. 2007;50(10):907-926. DOI: 10.1139/G07-072

14. Badaeva E.D., Friebe B., Gill B.S. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequence on chromosomes of diploid species. Genome. 1996;39(2):293-306.

15. Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests. Euphytica. 1996;91:59-87. DOI: 10.1007/BF00035277

16. Ganal M.W., Röder M.S. Microsatellite and SNP markers in wheat breeding. Genomics Assisted Crop Improvement. Eds R.K. Varshney, R. Tuberosa. Springer, 2007;2:1-24.

17. Khotyleva L., Koren L., Orlovskaya O. Use of Triticeae tribe species for expanding and enriching genetic resources of Triticum aestivum. Proc. 8th Int. Wheat Conf. St. Petersburg, 1–4 June 2010.

18. Kuleung C., Baenziger P.S., Dweikat I. Transferability of SSR markers among wheat, rye, and triticale. Theor. Appl. Genet. 2004;108(6): 1147-1150. DOI: 10.1007/s00122-003-1532-5

19. Lelley T., Larter E.N. Meiotic regulation in triticale: interaction of the rye genotype and specific wheat chromosomes on meiotic pairing in the hybrid. Can. J. Genet. Cytol. 1980;22(1):1-6.

20. Leonova I.N., Röder M.S., Nasyrova F. The application of wheat microsatellite markers for the detection of interspecific variation in tetraploid Aegilops species with C and U genomes. Cereal Res. Commun. 2009;37(3):335-343. DOI: 10.1556/CRC.37.2009.3.2

21. Markova M., Vyskot B. New horizons of genomic in situ hybridization. Cytogenet. Genome Res. 2009;126(4):368-375. DOI: 10.1159/000275796

22. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers4 J., Morris C., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat. 2013. Available at: http://www.shigen.nig.ac.jp/wheat/komugi/genes/

23. Naranjo T., Lacadena J.R., Giraldez R. Interaction between wheat and rye genomes on homologous and homoeologous pairing. Z. Pflanzenzuchtung. 1979;82(4):289-305.

24. Nevo E. Triticum. Wild Crop Relatives: Genomic and Breeding Resources, Cereals. Ed. C. Kole. Berlin; Heidelberg: Springer-Verlag, 2011.

25. Peng J., Korol A.B., Fahima T., Röder M.S., Ronin Y.I., Li Y.C., Nevo E. Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res. 2000;10(10):1509-1531. DOI: 10.1101/gr.150300

26. Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995;91:1001-1007.

27. Rabinovich S.V. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica. 1998;100: 323-340.

28. Raina S.N., Rani V. GISH technology in plant genome research. Methods Cell Sci. 2001;23(1-3):83-104. DOI: 10.1023/A:1013197705523

29. Salina E.A., Lim Y.K., Badaeva E.D., Shcherban A.B., Adonina I.G., Amosova A.V., Samatadze T.E., Vatolina T.Yu., Zoshchuk S.A., Leitch A.R. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome. 2006;49(8):1023-1035. DOI: 10.1139/g06-050

30. Schneider A., Linc G., Molnar-Lang M. Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed. 2003;122(5):396-400. DOI: 10.1046/j.1439-0523.2003.00891.x

31. Schneider A., Molnar I., Molnar-Lang M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163(1):1-19. DOI: 10.1007/

32. Schubert I., Shi F., Fuchs J., Endo T.R. An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J. 1998;14:489-495.

33. Sodkiewicz W., Strzembicka A., Apolinarska B. Chromosomal location in triticale of leaf rust resistance genes introduced from Triticum monococcum. Plant Breed. 2008;127(4):364-367. DOI: 10.1111/j.1439-0523.2007.01485.x

34. Somers D.J., Isaac P., Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2004;109(6):1105-1114. DOI: 10.1007/s00122-004-1740-7

35. Xie W., Nevo E. Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica. 2008;164(3):603-614. DOI: 10.1007/s10681-008-9703-8


Review

Views: 938


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)