Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The lowest chromosome number in the family Pteromalidae (Hymenoptera: Chalcidoidea): the karyotype and other genetic features of Pachycrepoideus vindemmiae (Rondani, 1875)

https://doi.org/10.18699/vjgb-25-12

Abstract

   Various genetic features of the hitman strain of the widespread parasitoid of Drosophilidae (Diptera), Pachycrepoideus vindemmiae (Rondani, 1875) (Pteromalidae, Pachyneurinae) were studied. This strain was established and is maintained at the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia). An analysis of air-dried chromosome preparations from prepupae of this parasitoid showed that it has n = 4 and 2n = 8 in males and females, respectively, which is the lowest known chromosome number in the family Pteromalidae. All chromosomes in the karyotype of this species are metacentric. The first and second chromosomes are of similar size, the remaining ones are substantially shorter. The same results were obtained for an additional strain of this species kept at the Moscow State University (Moscow, Russia). A comparison of the DNA sequence of the barcoding region of the mitochondrial cytochrome c oxidase (COI) gene of the hitman strain of P. vindemmiae with those available from the GenBank and BoLD databases demonstrated that this strain clustered together with conspecifics originating from China, Turkey and Italy. Despite certain endosymbionts being previously reported for the genus Pachycrepoideus Ashmead, 1904 as well as for P. vindemmiae itself, the hitman strain turned out to be free of endosymbiotic bacteria in the genera Arsenophonus Gherna et al., 1991, Cardinium Zchori-Fein et al., 2004, Rickettsia da Rocha-Lima, 1916, Spiroplasma Saglio et al., 1973 and Wolbachia Hertig, 1936. The above-mentioned results improve our knowledge of various genetic features of parasitoids of the family Pteromalidae and those of P. vindemmiae in particular.

About the Authors

V. E. Gokhman
Russian Entomological Society
Russian Federation

Moscow



A. S. Ryabinin
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



R. A. Bykov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



Yu. Yu. Ilinsky
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Center for Immunology and Cell Biology, Immanuel Kant Baltic Federal University
Russian Federation

Novosibirsk; Kaliningrad



References

1. Baldo L., Dunning Hotopp J.C., Jolley K.A., Bordenstein S.R., Biber S.A., Choudhury R.R., Hayashi C., Martin M.C.J., Tettelin H., Werren J.H. Multilocus sequence typing system for the endosymbiont. Appl Environ Microbiol. 2006;72(11):7098-7110. doi: 10.1128/aem.00731-06

2. Bebber D.P., Polaszek A., Wood J.R.I., Barker C., Scotland R.W. Taxonomic capacity and author inflation. New Phytol. 2014;202:741-742. doi: 10.1111/nph.12745

3. Bezerra Da Silva C.S., Price B.E., Soohoo-Hui A., Walton V.M. Factors affecting the biology of Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae), a parasitoid of spotted-wing drosophila (Drosophila suzukii). PLoS One. 2019;14(7). doi: 10.1371/journal.pone.0218301

4. Brown A.M.V., Wasala S.K., Howe D.K., Peetz A.B., Zasada I.A., Denver D.R. Comparative genomics of Wolbachia-Cardinium dual endosymbiosis in a plant-parasitic nematode. Front Microbiol. 2018;9. doi: 10.3389/fmicb.2018.02482

5. Burks R., Mitroiu M.-D., Fusu L., Heraty J.M., Janšta P., Heydon S., Dale-Skey Papilloud N., Peters R.S., Tselikh E.V., Woolley J.B., van Noort S., Baur H., Cruaud A., Darling C., Haas M., Hanson P., Krogmann L., Rasplus J.Y. From hell’s heart I stab at thee! A determined approach towards a monophyletic Pteromalidae and reclassification of Chalcidoidea (Hymenoptera). J Hymenopt Res. 2022;94:13-88. doi: 10.3897/jhr.94.94263

6. Cruaud A., Rasplus J.-Y., Zhang J., Burks R., Delvare G., Fusu L., Gumovsky A., Huber J.T., Janšta P., Mitroiu M.-D., Noyes J.S., van Noort S., Baker A., Böhmová J., Baur H., Blaimer B.B., Brady S.G., Bubeníková K., Chartois M., Copeland R.S., Dale-Skey Papilloud N., Dal Molin A., Dominguez C., Gebiola M., Guerrieri E., Kresslein R.L., Krogmann L., Lemmon E., Murray E.A., Nidelet S., Nieves-Aldrey J.L., Perry R.K., Peters R.S., Polaszek A., Sauné L., Torréns J., Triapitsyn S., Tselikh E.V., Yoder M., Lemmon A.R., Woolley J.B., Heraty J.M. The Chalcidoidea bush of life: evolutionary history of a massive radiation of minute wasps. Cladistics. 2024;40:34-63. doi: 10.1111/cla.12561

7. Duron O., Bouchon D., Boutin S., Bellamy L., Zhou L., Engelstädter J., Hurst G.D. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 2008;6:27. doi: 10.1186/1741-7007-6-27

8. Duron O., Wilkes T.E., Hurst G.D. Interspecific transmission of a malekilling bacterium on an ecological timescale. Ecol Lett. 2010;13(9): 1139-1148. doi: 10.1111/j.1461-0248.2010.01502.x

9. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3(5):294-299.

10. Forbes A.A., Bagley R.K., Beer M.A., Hippee A.C., Widmayer H.A. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 2018;18:21. doi: 10.1186/s12898-018-0176-x

11. Gavotte L., Henr H., Stouthamer R., Charif D., Charlat S., Boulétreau M., Vavre F. A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia. Mol Biol Evol. 2007;24(2):427-435. doi: 10.1093/molbev/msl171

12. Gokhman V.E. Karyotypes of Parasitic Hymenoptera. Dordrecht: Springer, 2009. doi: 10.1007/978-1-4020-9807-9

13. Gokhman V.E. Chromosomes of parasitic wasps of the superfamily Chalcidoidea (Hymenoptera) : an overview. Comp Cytogenet. 2020; 14:399-416. doi: 10.3897/compcytogen.v14i3.56535

14. Gokhman V.E. Comparative cytogenetics of the families Pteromalidae and Spalangiidae – a review. Entomol Exp Appl. 2024;172:467-471. doi: 10.1111/eea.13406

15. Gokhman V.E., Kuznetsova V.G. Parthenogenesis in Hexapoda: holometabolous insects. J Zool Syst Evol Res. 2018;56(1):23-34. doi: 10.1111/jzs.12183

16. Huang Y., Yang Y., Qi L., Hu H., Rasplus J.-Y., Wang X. Novel gene rearrangement pattern in Pachycrepoideus vindemmiae mitochondrial genome: new gene order in Pteromalidae (Hymenoptera: Chalcidoidea). Animals. 2023;13(12):1985. doi: 10.3390/ani13121985

17. Huber J.T. Biodiversity of Hymenoptera. Foottit R.G., Adler P.H. (Eds) Insect Biodiversity: Science and Society. 2<sup>nd</sup> ed. Oxford: Wiley Blackwell, 2017;419-461

18. Igolkina Y.P., Rar V.A., Yakimenko V.V., Malkova M.G., Tancev A.K., Tikunov A.Y., Epikhina T.I., Tikunova N.V. Genetic variability of Rickettsia spp. in Ixodes persulcatus/Ixodes trianguliceps sympatric areas from Western Siberia, Russia: identification of a new Candidatus Rickettsia species. Infect Genet Evol. 2015;34:88-93. doi: 10.1016/j.meegid.2015.07.015

19. Imai H.T., Taylor R.W., Crosland M.W.J., Crozier R.H. Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn J Genet. 1988;63:159-185. doi: 10.1266/jjg.63.159

20. Kitthawee S., Vasinpiyamongkol L. Mitotic karyotype of Spalangia endius Walker (Hymenoptera: Pteromalidae), a pupal parasitoid of tephritid flies (Diptera: Tephritidae) in Thailand. Cytologia. 2002; 67:435-438. doi: 10.1508/cytologia.67.435

21. Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201-220. doi: 10.1111/j.1601-5223.1964.tb01953.x

22. Lo N., Casiraghi M., Salati E., Bazzocchi C., Bandi C. How many Wolbachia supergroups exist? Mol Biol Evol. 2002;19(3):341-346. doi: 10.1093/oxfordjournals.molbev.a004087

23. Nadal-Jimenez P., Parratt S.R., Siozios S., Hurst G.D. Isolation, culture and characterization of Arsenophonus symbionts from two insect species reveal loss of infectious transmission and extended host range. Front Microbiol. 2023;14:1089143. doi: 10.3389/fmicb.2023.1089143

24. Pilgrim J., Thongprem P., Davison H.R., Siozios S., Baylis M., Zakharov E.V., Ratnasingham S., deWaard J.R., Macadam C.R., Smith M.A., Hurst G.D. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. GigaScience. 2021;10(3):giab021. doi: 10.1093/gigascience/giab021

25. Ratnasingham S., Hebert P.D. BoLD: the barcode of life data system (http://www.barcodinglife.org). Mol Ecol Notes. 2007;7(3):355-364. doi: 10.1111/j.1471-8286.2007.01678.x

26. Sanada-Morimura S., Matsumura M., Noda H. Male killing caused by a Spiroplasma symbiont in the small brown planthopper, Laodelphax striatellus. J Hered. 2013;104(6):821-829. doi: 10.1093/jhered/est052

27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-2729. doi: 10.1093/molbev/mst197

28. Tarlachkov S.V., Efeykin B.D., Castillo P., Evtushenko L.I., Subbotin S.A. Distribution of bacterial endosymbionts of the Cardinium clade in plant-parasitic nematodes. Int J Mol Sci. 2023;24(3): ijms24032905. doi: 10.3390/ijms24032905

29. van den Assem J. Male courtship patterns and female receptivity signal of Pteromalinae (Hym., Pteromalidae), with a consideration of some evolutionary trends and a comment on the taxonomic position of Pachycrepoideus vindemiae. Neth J Zool. 1974;24:253-278. doi: 10.1163/002829674x00066

30. Werren J.H., Baldo L., Clark M.E. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6(10):741-751. doi: 10.1038/nrmicro1969


Review

Views: 212


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)