Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Association of two missense mutations in the MSS51 and KAT6B genes with body weight at different ages in cows of the Yaroslavl breed

https://doi.org/10.18699/vjgb-25-14

Abstract

   The Yaroslavl cattle is a native Russian dairy breed developed in the 19th century from the Northern Great Russian cattle, which were adapted to withstand harsh climates and poor forage conditions. Previous studies identified two breed-specific missense mutations in the MSS51 (Ala415Glu) and KAT6B (Val105Met) genes that negatively impact the body weight of the animals.

   This study aimed to confirm the association of these missense mutations in the MSS51 and KAT6B genes, along with the mutant haplotype containing both mutations, with live weight at various ages in the Yaroslavl breed using an expanded sample set.

   We genotyped 113 cows for these missense variants and analyzed their associations with live weight at birth, as well as at 6, 10, 12, 15, and 18 months in a combined sample of 143 animals, which includes earlier data. We employed linear regression and one-way ANOVA for statistical analysis. The results from linear regression indicated significant associations with live weight at 6, 12, and 18 months for the mutation in the KAT6B gene. The MSS51 gene mutation was associated with live weight at 6, 12, 15, and 18 months. Notably, the mutant haplotype was linked to live weight across all ages from 6 to 18 months. One-way ANOVA revealed significant associations of live weight with KAT6B genotypes only at 6 months. For the MSS51 gene mutation and the mutant haplotype, significant associations were found at 6, 12, 15, and 18 months. In both statistical tests, the most significant association was observed for the mutant haplotype rather than for the individual variants. These findings could be instrumental in enhancing the live weight of beef hybrids utilising the Yaroslavl cattle breed.

About the Authors

A. V. Igoshin
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences,
Russian Federation

Novosibirsk



N. S. Yudin
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences,
Russian Federation

Novosibirsk



D. M. Larkin
University of London, Royal Veterinary College
United Kingdom

London



References

1. Abdelmanova A.S., Kharzinova V.R., Volkova V.V., Mishina A.I., Dotsev A.V., Sermyagin A.A., Boronetskaya O.I., Petrikeeva L.V., Chinarov R.Y., Brem G., Zinovieva N.A. Genetic diversity of historical and modern populations of Russian cattle breeds revealed by microsatellite analysis. Genes (Basel). 2020;11(8):940. doi: 10.3390/genes11080940

2. Bergamasco M.I., Abeysekera W., Garnham A.L., Hu Y., Li-Wai-Suen C.S.N., Sheikh B.N., Smyth G.K., Thomas T., Voss A.K. KAT6B is required for histone 3 lysine 9 acetylation and SOX gene expression in the developing brain. Life Sci Alliance. 2024a;8(2): e202402969. doi: 10.26508/lsa.202402969

3. Bergamasco M.I., Vanyai H.K., Garnham A.L., Geoghegan N.D., Vogel A.P., Eccles S., Rogers K.L., Smyth G.K., Blewitt M.E., Hannan A.J., Thomas T., Voss A.K. Increasing histone acetylation improves sociability and restores learning and memory in KAT6B-haploinsufficient mice. J Clin Invest. 2024b;134(7):e167672. doi: 10.1172/JCI167672

4. Burmistrov V.A., Pogosyan G.A., Asianin V., Golubeva A.I. Cross-breeding to thorough-bred Galloway bulls improves beef-making qualities of cattle bred in the Yaroslavl region. Molochnoye i Myasnoye Skotovodstvo = Dairy and Meat Cattle Breed. 2013;7:17-19 (in Russian)

5. Chen S., He T., Chen J., Wen D., Wang C., Huang W., Yang Z., Yang M., Li M., Huang S., Huang Z., Zhu H. Betaine delays age-related muscle loss by mitigating Mss51-induced impairment in mitochondrial respiration via Yin Yang1. J Cachexia Sarcopenia Muscle. 2024;15(5):2104-2117. doi: 10.1002/jcsm.13558

6. Colombi D., Perini F., Bettini S., Mastrangelo S., Abeni F., Conte G., Marletta D., Cassandro M., Bernabucci U., Ciampolini R., Lasagna E. Genomic responses to climatic challenges in beef cattle : a review. Anim Genet. 2024;55(6):854-870. doi: 10.1111/age.13474

7. Curone G., Filipe J., Cremonesi P., Piccioli-Cappelli F., Trevisi E., Amadori M. Relevance of the dairy cow biodiversity in the development of a profitable and environmentally sustainable livestock. CABI Rev. 2019;14:1-11. doi: 10.1079/PAVSNNR201914024

8. Dmitriev N.G., Ernst L.K. Animal Genetics Resources of the USSR. Rome: Food and Agriculture Organization of the United Nations, 1989

9. FAO. Status and Trends of Animal Genetic Resources. Rome: Commission on Genetic Resources for Food and Agriculture, 2024

10. Gonzalez Y.I.R., Moyer A.L., LeTexier N.J., Bratti A.D., Feng S., Sun C., Liu T., Mula J., Jha P., Iyer S.R., Lovering R.M., O’Rourke B., Noh H.L., Suk S., Kim J.K., Essien Umanah G.K., Wagner K.R. Mss51 deletion enhances muscle metabolism and glucose homeostasis in mice. JCI Insight. 2019;4(20):e122247. doi: 10.1172/jci.insight.122247

11. Iso-Touru T., Tapio M., Vilkki J., Kiseleva T., Ammosov I., Ivanova Z., Popov R., Ozerov M., Kantanen J. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Anim Genet. 2016;47(6):647-657. doi: 10.1111/age.12473

12. Kochetkov A.A. Use of world and Russian breed resources of beef cattle to increase the production of high-quality meat in the North Caucasus and the central zone of Russia: Dr. (Agricultural Sci.) Dissertation. 2011 (in Russian)

13. Korenev M.M., Furaeva N.S., Khrustaleva V.I., Ursol A.Yu., Vorobyova S.S., Konovalov A.V., Kosyachenko N.M., Ilyina A.V., Muratova N.S., Gvazava D.G., Tarasenkova N.A., Malyukova M.A. Breeding Measures for the Preservation and Improvement of the Yaroslavl Cattle Breed for 2013–2020. Yaroslavl: Kantsler Publ., 2013 (in Russian)

14. Lu G., Moriyama E.N. Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform. 2004;5(4):378-388. doi: 10.1093/bib/5.4.378

15. Monoenkov M.I. Yaroslavl Breed of Cattle. Yaroslavl, 1974 (in Russian)

16. Moyer A.L., Wagner K.R. Mammalian Mss51 is a skeletal muscle-specific gene modulating cellular metabolism. J Neuromuscul Dis. 2015;2(4):371-385. doi: 10.3233/JND-150119

17. Ota M., Fukushima H., Kulski J.K., Inoko H. Single nucleotide polymorphism detection by polymerase chain reaction-restriction fragment length polymorphism. Nat Protoc. 2007;2(11):2857-2864. doi: 10.1038/nprot.2007.407

18. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-575. doi: 10.1086/519795

19. Ruvinskiy D., Igoshin A., Yurchenko A., Ilina A.V., Larkin D.M. Resequencing the Yaroslavl cattle genomes reveals signatures of selection and a rare haplotype on BTA28 likely to be related to breed phenotypes. Anim Genet. 2022;53(5):680-684. doi: 10.1111/age.13230

20. Sambrook J., Russell D.W. The Condensed Protocols from Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, 2006

21. Tamarova R.V. Will we save our Yaroslavl wet nurse? On the 140<sup>th</sup> anniversary of the creation of the Yaroslavl breed. Vestnik APK Verkhnevolzh’ya = Agroindustrial Complex of Upper Volga Region Herald. 2009;3(7):20-23 (in Russian)

22. van der Heide E.M.M., Lourenco D.A.L., Chen C.Y., Herring W.O., Sapp R.L., Moser D.W., Tsuruta S., Masuda Y., Ducro B.J., Misztal I. Sexual dimorphism in livestock species selected for economically important traits. J Anim Sci. 2016;94(9):3684-3692. doi: 10.2527/jas.2016-0393

23. Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. doi: 10.1186/1471-2105-13-134

24. Yudin N.S., Larkin D.M. Whole genome studies of origin, selection and adaptation of the Russian cattle breeds. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2019;23(5):559-568. doi: 10.18699/VJ19.525 (in Russian)

25. Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., Larkin D.M. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity (Edinb). 2018;120(2):125-137. doi: 10.1038/s41437-017-0024-3

26. Zhang L.X., Lemire G., Gonzaga-Jauregui C., Molidperee S., Galaz-Montoya C., Liu D.S., Verloes A., … Bamshad M.J., Lee B.H., Yang X.-J., Lupski J.R., Campeau P.M. Further delineation of the clinical spectrum of KAT6B disorders and allelic series of pathogenic variants. Genet Med. 2020;22(8):1338-1347. doi: 10.1038/s41436-020-0811-8

27. Zhu L., Lv L., Wu D., Shao J. KAT6B genetic variant identified in a short stature chinese infant: a report of physical growth in clinical spectrum of KAT6B-related disorders. Front Pediatr. 2020;8:124. doi: 10.3389/fped.2020.00124


Review

Views: 171


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)