Comparative analysis of haplotypes carrying pathogenic variants c.1545T>G, c.2027T>A and c.919-2A>G of the SLC26A4 gene in patients with hearing loss from the Tyva Republic (Southern Siberia)
https://doi.org/10.18699/vjgb-25-17
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Full Text:
Abstract
Pathogenic variants in the SLC26A4 gene (OMIM #605646), leading to non-syndromic recessive hearing loss type 4 (DFNB4) and Pendred syndrome, significantly contribute to the etiology of hearing loss in many populations of the world. The spectrum and prevalence of different pathogenic SLC26A4 variants are characterized by wide ethno-geographical variability. A high frequency of some of them in certain regions of the world may indicate either their independent origin or be a consequence of the founder effect. The proportion of SLC26A4-associated hearing loss in Tuvinian patients (the Tyva Republic, Southern Siberia) is one of the highest in the world (28.2 %) and the vast majority of mutant SLC26A4 alleles are represented by three pathogenic variants c.919-2A>G, c.2027T>A and c.1545T>G (69.3, 17.5 and 8.0 %, respectively). Their overall carrier frequency in the Tuvinian population reaches 7.1 %. The accumulation of these variants in Tuvinian patients suggests a role of the founder effect in their prevalence in Tuva, which can be confirmed by the common genetic background (haplotypes) for each of them. For reconstruction of haplotypes in the carriers of variants c.1545T>G and c.2027T>A, the genotyping data of a panel of polymorphic genetic markers were used: five STRs (four of them flank the SLC26A4 gene at different distances and one is intragenic) and nine intragenic SNPs. Comparative analysis of the reconstructed haplotypes for c.1545T>G and c.2027T>A with previously obtained data on haplotypes for the c.919-2A>G variant showed that each of the analyzed variants has a specific (similar for all carriers of a particular variant) genetic background, apparently inherited from different “founder ancestors”. These data confirm the cumulative founder effect in the prevalence of pathogenic variants c.1545T>G, c.2027T>A, and c.919- 2A>G of the SLC26A4 gene in the indigenous population of the Tyva Republic. The obtained data are relevant both for predicting the prevalence of SLC26A4-caused hearing loss and for development of region-specific DNA diagnostics of inherited hearing loss in the Tyva Republic.
Keywords
About the Authors
V. Yu. DanilchenkoRussian Federation
Novosibirsk
M. V. Zytsar
Russian Federation
Novosibirsk
E. A. Panina
Russian Federation
Novosibirsk
K. E. Orishchenko
Russian Federation
Novosibirsk
O. L. Posukh
Russian Federation
Novosibirsk
References
1. Albert S., Blons H., Jonard L., Feldmann D., Chauvin P., Loundon N., SergentAllaoui A., Houang M., Joannard A., Schmerber S., Delobel B., Leman J., Journel H., Catros H., Dollfus H., Eliot M.M., David A., Calais C., DrouinGarraud V., Obstoy M.F., Tran Ba Huy P., Lacombe D., Duriez F., Francannet C., Bitoun P., Petit C., Garabédian E.N., Couderc R., Marlin S., Denoyelle F. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur J Hum Genet. 2006;14(6):773779. https://doi.org/10.1038/sj.ejhg.5201611
2. Ben Arab S., Masmoudi S., Beltaief N., Hachicha S., Ayadi H. Consanguinity and endogamy in Northern Tunisia and its impact on non-syndromic deafness. Genet Epidemiol. 2004;27(1):74-79. https://doi.org/10.1002/gepi.10321
3. Bengtsson B.O., Thomson G. Measuring the strength of associations between HLA antigens and diseases. Tissue Antigens. 1981;18(5): 356363. https://doi.org/10.1111/j.13990039.1981.tb01404.x
4. Chai Y., Huang Z., Tao Z., Li X., Li L., Li Y., Wu H., Yang T. Molecular etiology of hearing impairment associated with nonsyndromic enlarged vestibular aqueduct in East China. Am J Med Genet A. 2013;161A(9):22262233. https://doi.org/10.1002/ajmg.a.36068
5. Chen Z., Zhang Y., Fan A., Zhang Y., Wu Y., Zhao Q., Zhou Y., Zhou C., Bawudong M., Mao X., Ma Y., Yang L., Ding Y., Wang X., Rao S. Brief communication: Ychromosome haplogroup analysis indicates that Chinese Tuvans share distinctive affinity with Siberian Tuvans. Am J Phys Anthropol. 2011;144(3):492-497. https://doi.org/10.1002/ajpa.21453
6. Choi B.Y., Stewart A.K., Nishimura K.K., Cha W.J., Seong M.W., Park S.S., Kim S.W., Chun Y.S., Chung J.W., Park S.N., Chang S.O., Kim C.S., Alper S.L., Griffith A.J., Oh S.H. Efficient molecular genetic diagnosis of enlarged vestibular aqueducts in East Asians. Genet Test Mol Biomarkers. 2009;13(5):679687. https://doi.org/10.1089/gtmb.2009.0054
7. Chong J.X., Ouwenga R., Anderson R.L., Waggoner D.J., Ober C. A population-based study of autosomal-recessive disease-causing mutations in a founder population. Am J Hum Genet. 2012;91(4): 608620. https://doi.org/10.1016/j.ajhg.2012.08.007
8. Common J.E., Di W.L., Davies D., Kelsell D.P. Further evidence for heterozygote advantage of GJB2 deafness mutations: a link with cell survival. J Med Genet. 2004;41(7):573575. https://doi.org/10.1136/jmg.2003.017632
9. Dai P., Li Q., Huang D., Yuan Y., Kang D., Miller D.T., Shao H., Zhu Q., He J., Yu F., Liu X., Han B., Yuan H., Platt O.S., Han D., Wu B.L. SLC26A4 c.919-2A>G varies among Chinese ethnic groups as a cause of hearing loss. Genet Med. 2008;10(8):586592. https://doi.org/10.1097/gim.0b013e31817d2ef1
10. Danilchenko V.Y., Zytsar M.V., Maslova E.A., BadyKhoo M.S., Barashkov N.A., Morozov I.V., Bondar A.A., Posukh O.L. Different rates of the SLC26A4-related hearing loss in two indigenous peoples of southern Siberia (Russia). Diagnostics (Basel). 2021;11(12): 2378. https://doi.org/10.3390/diagnostics11122378
11. Danilchenko V.Y., Zytsar M.V., Maslova E.A., Orishchenko K.E., Posukh O.L. Insight into the natural history of pathogenic variant c.919-2A>G in the SLC26A4 gene involved in hearing loss: the evidence for its common origin in southern Siberia (Russia). Genes (Basel). 2023;14(4):928. https://doi.org/10.3390/genes14040928
12. Du W., Guo Y., Wang C., Wang Y., Liu X. A systematic review and meta-analysis of common mutations of SLC26A4 gene in Asian populations. Int J Pediatr Otorhinolaryngol. 2013;77(10):1670-1676. https://doi.org/10.1016/j.ijporl.2013.07.023
13. Erdenechuluun J., Lin Y.H., Ganbat K., Bataakhuu D., Makhbal Z., Tsai C.Y., Lin Y.H., Chan Y.H., Hsu C.J., Hsu W.C., Chen P.L., Wu C.C. Unique spectra of deafness-associated mutations in Mongolians provide insights into the genetic relationships among Eurasian populations. PLoS One. 2018;13(12):e0209797. https://doi.org/10.1371/journal.pone.0209797
14. Gillam M.P., Sidhaye A.R., Lee E.J., Rutishauser J., Stephan C.W., Kopp P. Functional characterization of pendrin in a polarized cell system. Evidence for pendrinmediated apical iodide efflux. J Biol Chem. 2004;279(13):1300413010. https://doi.org/10.1074/jbc.M313648200
15. Huang S., Han D., Yuan Y., Wang G., Kang D., Zhang X., Yan X., Meng X., Dong M., Dai P. Extremely discrepant mutation spectrum of SLC26A4 between Chinese patients with isolated Mondini deformity and enlarged vestibular aqueduct. J Transl Med. 2011;9:167. https://doi.org/10.1186/147958769167
16. Kun L., Jiexiang H., Hua L., Junlin H., Yijun R., Lixian Z., Mingqiao C. Genetic screening of 15 hearing loss variants in 77,647 neonates with clinical follow-up. Mol Genet Genomic Med. 2024;12(1): e2324. https://doi.org/10.1002/mgg3.2324
17. Lu Y.C., Wu C.C., Shen W.S., Yang T.H., Yeh T.H., Chen P.J., Yu I.S., Lin S.W., Wong J.M., Chang Q., Lin X., Hsu C.J. Establishment of a knock-in mouse model with the SLC26A4 c.919-2A>G mutation and characterization of its pathology. PLoS One. 2011;6(7):e22150. https://doi.org/10.1371/journal.pone.0022150
18. Lu Y.J., Yao J., Wei Q.J., Xing G.Q., Cao X. Diagnostic value of SLC26A4 mutation status in hereditary hearing loss with EVA: a PRISMAcompliant metaanalysis. Medicine (Baltimore). 2015; 94(50):e2248. https://doi.org/10.1097/MD.0000000000002248
19. Mannaiool M.Kh. Tuvan People. The Origin and Formation of the Ethnos. Novosibirsk: Nauka Publ., 2004 (in Russian)
20. Mongush M.V. Tuvans of Mongolia and China. Int J Cent Asian Stud. 1996;1:225-243
21. Nance W.E., Kearsey M.J. Relevance of connexin deafness (DFNB1) to human evolution. Am J Hum Genet. 2004;74(6):10811087. https://doi.org/10.1086/420979
22. Nance W.E., Liu X.Z., Pandya A. Relation between choice of partner and high frequency of connexin-26 deafness. Lancet. 2000; 356(9228):500501. https://doi.org/10.1016/S01406736(00)025654
23. Park H.J., Shaukat S., Liu X.Z., Hahn S.H., Naz S., Ghosh M., Kim H.N., Moon S.K., Abe S., Tukamoto K., Riazuddin S., Kabra M., Erdenetungalag R., Radnaabazar J., Khan S., Pandya A., Usami S.I., Nance W.E., Wilcox E.R., Riazuddin S., Griffith A.J. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: global implications for the epidemiology of deafness. J Med Genet. 2003;40(4):242248. https://doi.org/10.1136/jmg.40.4.242
24. Razdan S., Raina S.K., Pandita K.K., Razdan S., Nanda R., Kaul R., Dogra S. Inbreeding as a cause for deafness: Dadhkai study. Indian J Hum Genet. 2012;18(1):7174. https://doi.org/10.4103/09716866.96655
25. Risch N., de Leon D., Ozelius L., Kramer P., Almasy L., Singer B., Fahn S., Breakefield X., Bressman S. Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their recent descent from a small founder population. Nat Genet. 1995;9(2):152-159. https://doi.org/10.1038/ng0295152
26. Scott D.A., Carmi R., Elbedour K., Duyk G.M., Stone E.M., Sheffield V.C. Nonsyndromic autosomal recessive deafness is linked to the DFNB1 locus in a large inbred Bedouin family from Israel. Am J Hum Genet. 1995;57(4):965698.
27. Slatkin M., Rannala B. Estimating allele age. Annu Rev Genomics Hum Genet. 2000;1:225-249. https://doi.org/10.1146/annurev.genom.1.1.225
28. Tsukada K., Nishio S.Y., Hattori M., Usami S. Ethnicspecific spectrum of GJB2 and SLC26A4 mutations : their origin and a literature review. Ann Otol Rhinol Laryngol. 2015;124(1):61S-76S. https://doi.org/10.1177/0003489415575060
29. Vainshtein S.I., MannayOol M.H. (Eds) History of Tyva. Vol. 1. Novosibirsk: Nauka Publ., 2001 (in Russian)
30. Wasano K., Takahashi S., Rosenberg S.K., Kojima T., Mutai H., Matsunaga T., Ogawa K., Homma K. Systematic quantification of the anion transport function of pendrin (SLC26A4) and its disease-associated variants. Hum Mutat. 2020;41(1):316-331. https://doi.org/10.1002/humu.23930
31. Wu C.C., Yeh T.H., Chen P.J., Hsu C.J. Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia: a unique spectrum of mutations in Taiwan, including a frequent founder mutation. Laryngoscope. 2005;115(6):1060-1064. https://doi.org/10.1097/01.MLG.0000163339.61909.D0
32. Yang J.J., Tsai C.C., Hsu H.M., Shiao J.Y., Su C.C., Li S.Y. Hearing loss associated with enlarged vestibular aqueduct and Mondini dysplasia is caused by splice-site mutation in the PDS gene. Hear Res. 2005;199(12):2230. https://doi.org/10.1016/j.heares.2004.08.007
33. Yang X.L., Bai-Cheng X., Chen X.J., PanPan B., JianLi M., Xiao-Wen L., Zhang Z.W., Wan D., Zhu Y.M., Guo Y.F. Common molecular etiology of patients with nonsyndromic hearing loss in Tibetan, Tu nationality, and Mongolian patients in the northwest of China. Acta Otolaryngol. 2013;133(9):930934. https://doi.org/10.3109/00016489.2013.795288
34. Yoon J.S., Park H.J., Yoo S.Y., Namkung W., Jo M.J., Koo S.K., Park H.Y., Lee W.S., Kim K.H., Lee M.G. Heterogeneity in the processing defect of SLC26A4 mutants. J Med Genet. 2008;45(7):411-419. https://doi.org/10.1136/jmg.2007.054635
35. Zlotogora J. Multiple mutations responsible for frequent genetic diseases in isolated populations. Eur J Hum Genet. 2007;15(3):272-278. https://doi.org/10.1038/sj.ejhg.5201760