Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Computer reconstruction of gene networks controlling anxiety levels in humans and laboratory mice

https://doi.org/10.18699/vjgb-25-19

Abstract

   Anxiety is a normotypic human condition, and like any other emotion has an adaptive value. But excessively high or low anxiety has negative consequences for adaptation, which primarily determines the importance of studying these two extreme conditions. At the same time, it is known that the perception of aversive stimuli associated with anxiety leads to changes in the activity of the brain’s cingulate cortex. The advantage of animals as models in studying the genetic bases of anxiety in humans is in the ability to subtly control the external conditions of formation of a certain state, the availability of brain tissues, and the ability to create and study transgenic models, including through the use of differentially expressed genes of small laboratory animals from the family Muridae with low and high anxiety. Within the framework of the translational approach, a three-domain potential gene network, which is associated with generalized anxiety in humans, was reconstructed using mouse models with different levels of anxiety by automatically analyzing the texts of scientific articles. One domain is associated with reduced anxiety in humans, the second with increased anxiety, and the third is a dispatcher who activates one of the two domains depending on the status of the organism (genetic, epigenetic, physiological). Stages of work: (I) A list of genes expressed in the cingulate cortex of the wild type CD-1 mouse line from the NCBI GEO database (experiment GSE29014). Using the tools of this database, differences in gene expression levels were revealed in groups of mice with low and high (relatively normal) anxiety. (II) Search for orthologs of DEG in humans and mice associated with anxiety in the OMA Orthology database. (III) Computer reconstruction using the ANDSystem cognitive system based on (a) human orthologous genes from stage (III), (b) human genes from the MalaCards database associated with human anxiety. The proven methods of the translational approach for the reconstruction of gene networks for behavior regulation can be used to identify molecular genetic markers of human personality traits, propensity to psychopathology.

About the Authors

E. G. Vergunov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Scientific Research Institute of Neurosciences and Medicine; Novosibirsk State University
Russian Federation

Novosibirsk



V. A. Savostyanov
Herzen University
Russian Federation

St. Petersburg



A. A. Makarova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. I. Nikolaeva
Herzen University
Russian Federation

St. Petersburg



A. N. Savostyanov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Scientific Research Institute of Neurosciences and Medicine; Novosibirsk State University
Russian Federation

Novosibirsk



References

1. Brasher M.S., Mize T.J., Thomas A.L., Hoeffer C.A., Ehringer M.A., Evans L.M. Testing associations between human anxiety and genes previously implicated by mouse anxiety models. Genes Brain Behav. 2023;22(6):e12851. doi: 10.1111/gbb.12851

2. Bruzzone S.E.P., Ozenne B., Fisher P.M., Ortega G., Jensen P.S., Dam V.H., Svarer C., Knudsen G.M., Lesch K.P., Frokiaer V.G. No association between peripheral serotonin-gene-related DNA methylation and brain serotonin neurotransmission in the healthy and depressed state. Clin Epigenet. 2024;416(1):71. doi: 10.1186/s13148-024-01678-y

3. Chadaeva I.V., Filonov S.V., Zolotareva K.A., Khandaev B.M., Er­shov N.I., Podkolodnyy N.L., Kozhemyakina R.V., Rasskazov D.A., Bogomolov A.G., Kondratyuk E.Y., Klimova N.V., Shikhevich S.G., Ryazanova M.A., Fedoseeva L.A., Redina О.Е., Kozhevnikova O.S., Stefanova N.A., Kolosova N.G., Markel A.L., Ponomarenko M.P., Oshchepkov D.Y. RatDEGdb: a knowledge base of differentially expressed genes in the rat as a model object in biomedical research. Vavilovskii Zhurnal Genet Selektsii = Vavilov J Genet Breed. 2023;27(7):794-806. doi: 10.18699/VJGB-23-92

4. Chen Y., Elenee Argentinis J.D., Weber G. IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. Clin Ther. 2016;38(4):688-701. doi: 10.1016/j.clinthera.2015.12.001

5. Czibere L., Baur L.A., Wittmann A., Gemmeke K., Steiner A., Weber P., Pütz B., Ahmad N., Bunck M., Graf C., Widner R., Kühne C., Panhuysen M., Hambsch B., Rieder G., Reinheckel T., Peters C., Holsboer F., Landgraf R., Deussing J.M. Profiling trait anxiety: transcriptome analysis reveals cathepsin B (Ctsb) as a novel candidate gene for emotionality in mice. PLoS One. 2011;6(8):e23604. doi: 10.1371/journal.pone.0023604

6. de la Pena-Arteaga V., Chavarria-Elizondo P., Juaneda-Segui A., Mar­tinez-Zalacain I., Morgado P., Menchon J.M., Pico-Perez M., Fullana M.A., Soriano­Mas C. Trait anxiety is associated with attentional brain networks. Eur Neuropsychopharmacol. 2024;83:19-26. doi: 10.1016/j.euroneuro.2024.02.013

7. Duncan L.E., Pollastri A.R., Smoller J.W. Mind the gap: why many geneticists and psychological scientists have discrepant views about gene–environment interaction (G×E) research. Am Psychol. 2014; 69(3):249-268. doi: 10.1037/a0036320

8. Ebstein R.P. The molecular genetic architecture of human personality: beyond self­report questionnaires. Mol Psychiatry. 2006;11(5):427-445. doi: 10.1038/sj.mp.4001814

9. Friligkou E., Løkhammer S., Cabrera-Mendoza B., Shen J., He J., Deiana G., Zanoaga M.D., Asgel Z., Pilcher A., Di Lascio L., Makharashvili A., Koller D., Tylee D.S., Pathak G.A., Polimanti R. Gene discovery and biological insights into anxiety disorders from a large-scale multi­ancestry genome­wide association study. Nat Genet. 2024;56(10):2036-2045. doi: 10.1038/s41588-024-01908-2

10. Galyamina A.G., Kovalenko I.L., Smagin D.A., Kudryavtseva N.N. Changes in the expression of neurotransmitter system genes in the ventral tegmental area in depressed mice: RNA-SEQ data. Neurosci Behav Physiol. 2018;48(5):591-602. doi: 10.1007/s11055-018-0605-5

11. Gottschalk M.G., Domschke K. Genetics of generalized anxiety disorder and related traits. Dialogues Clin Neurosci. 2017;19(2):159-168. doi: 10.31887/DCNS.2017.19.2/kdomschke

12. Gryksa K., Schmidtner A.K., Masis-Calvo M., Rodriguez-Villagra O.A., Havasi A., Wirobski G., Maloumby R., Jagle H., Bosch O.J., Slattery D.A., Neumann I.D. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: a unique model for comorbid depression and social dysfunctions. Neurosci Biobehav Rev. 2023;152:105292. doi: 10.1016/j.neubiorev.2023.105292

13. Gunthert K., Conner T.S., Armeli S., Tennen H., Covault J., Kranzler H.R. Serotonin transporter gene polymorphism (5-HTTLPR) and anxiety reactivity in daily life: a daily process approach to gene-environment interaction. Psychosom Med. 2007;69(8):762-768. doi: 10.1097/PSY.0b013e318157ad42

14. Hackam D.G., Redelmeier D.A. Translation of research evidence from animals to humans. JAMA. 2006;296(14):1727-1732. doi: 10.1001/jama.296.14.1731

15. Hettema J.M., Neale M.C., Kendler K.S. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry. 2001;158(10):1568-1578. doi: 10.1176/appi.ajp.158.10.1568

16. Hettema J.M., Webb B.T., Guo A.-Y., Zhao Z., Maher B.S., Chen X., An S.­S., Sun C., Aggen S.H., Kendler K.S., Kuo P.­H., Otowa T., Flint J., van den Oord E.J. Prioritization and association analysis of murine­derived candidate genes in anxiety­spectrum disorders. Biol Psychiatry. 2011;70(9):888-896. doi: 10.1016/j.biopsych.2011.07.012

17. Hirai A., Toda C., Yohannes Y.B., Collins N., Tambai M., Nomiyama K., Eguchi A., Hoshi N., Hirano T., Nakayama S.M.M., Ishizuka M., Ikenaka Y. Role of brain monoamines in acetamiprid-induced anxiety­like behavior. Toxicology. 2024;505:153839. doi: 10.1016/j.tox.2024.153839

18. Hovatta I., Barlow C. Molecular genetics of anxiety in mice and men. Ann Med. 2008;40(2):92-109. doi: 10.1080/07853890701747096

19. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019;20(Suppl.1):34. doi: 10.1186/s12859-018-2567-6

20. Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Y.I., Voevoda S.M., Karpenko T.N., Velichko A.J., Voevoda M.I., Kolchanov N.A., Pokrovsky A.G. Plasma metabolo­mics and gene regulatory networks analysis reveal the role of non-structural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci Rep. 2022;12(1):19977. doi: 10.1038/s41598-022-24170-0

21. Ivanisenko V.A., Rogachev A.D., Makarova A.-L.A., Basov N.V., Gaisler E.V., Kuzmicheva I.N., Demenkov P.S., Venzel A.S., Ivanisenko T.V., Antropova E.A., Kolchanov N.A., Plesko V.V., Moroz G.B., Lomivorotov V.V., Pokrovsky A.G. AI-assisted identification of primary and secondary metabolomic markers for postoperative deli rium. Int J Mol Sci. 2024;25(21):11847. doi: 10.3390/ijms252111847

22. Ivanov R., Zamyatin V., Klimenko A., Matushkin Y., Savostyanov A., Lashin S. Reconstruction and analysis of gene networks of human neurotransmitter systems reveal genes with contentious manifestation for anxiety, depression, and intellectual disabilities. Genes. 2019;10(9):699. doi: 10.3390/genes10090699

23. Kolchanov N.A., Anan’ko E.A., Kolpakov F.A., Podkolodnaya O.A., Ignat’eva E.V., Goryachkovskaya T.N., Stepanenko I.L. Gene networks. Mol Biol. 2000;34(4):449-460. doi: 10.1007/BF02759554

24. Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Yu.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2013;17(4/2):833-850 (in Russian)

25. Koskinen M.-K., Hovatta I. Genetic insights into the neurobiology of anxiety. Trends Neurosci. 2023;46(4):318-331. doi: 10.1016/j.tins.2023.01.007

26. Krämer A., Green J., Pollard J., Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014; 30(4):523-530. doi: 10.1093/bioinformatics/btt703

27. Krause C., Suwada K., Blomme E.A.G., Kowalkowski K., Liguori M.J., Mahalingaiah P.K., Mittelstadt S., Peterson R., Rendino L., Vo A., Van Vleet T.R. Preclinical species gene expression database: development and meta­analysis. Front Genet. 2023;13:1078050. doi: 10.3389/fgene.2022.1078050

28. Lesch K.P., Bengel D., Heils A., Sabol S.Z., Greenberg B.D., Petri S., Benjamin J., Muller C.R., Hamer D.H., Murphy D.L. Association of anxiety­related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274(5292):1527-1531. doi: 10.1126/science.274.5292.1527

29. Malezieux M., Klein A.S., Gogolla N. Neural circuits for emotion. Annu Rev Neurosci. 2023;46:211-231. doi: 10.1146/annurev-neuro-111020­103314

30. Meng P., Pan C., Qin X., Cai Q., Zhao Y., Wei W., Cheng S., Yang X., Cheng B., Liu L., He D., Shi S., Chu X., Zhang N., Jia Y., Wen Y., Liu H., Zhang F. A genome-wide gene-environmental interaction study identified novel loci for the relationship between ambientair pollution exposure and depression, anxiety. Ecotoxicol Environ Saf. 2024;285:117121. doi: 10.1016/j.ecoenv.2024.117121

31. Moraes A.C.N., Wijaya C., Freire R., Quagliato L.A., Nardi A.E., Kyriakoulis P. Neurochemical and genetic factors in panic disorder : a systematic review. Transl Psychiatry. 2024;14:294. doi: 10.1038/s41398-024-02966-0

32. Morris-Rosendahl D.J. Are there anxious genes? Dialogues Clin Neurosci. 2002;4(3):251-260. doi: 10.31887/DCNS.2002.4.3/dmrosendahl

33. Mostafavi S., Ray D., Warde-Farley D., Grouios C., Morris Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 2008; 9(Suppl.1):S4. doi: 10.1186/gb-2008-9-s1-s4

34. Mucha M., Skrzypiec A.E., Kolenchery J.B., Brambilla V., Patel S., Labrador-Ramos A., Kudla L., Murrall K., Skene N., Dymicka-Piekarska V., Klejman A., Przewlocki R., Mosienko V., Pawlak R. miR-483-5p offsets functional and behavioural effects of stress in male mice through synapse­targeted repression of Pgap2 in the basolateral amygdala. Nat Commun. 2023;14:2134. doi: 10.1038/s41467-023-37688-2

35. Murphy D.L., Moya P.R., Fox M.A., Rubenstein L.M., Wendland J.R., Timpano K.R. Anxiety and affective disorder comorbidity related to serotonin and other neurotransmitter systems: obsessive-compulsive disorder as an example of overlapping clinical and genetic hetero geneity. Phil Trans R Soc B. 2013;368:20120435 doi: 10.1098/rstb.2012.0435

36. Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat. 2015;17(11):165-175. doi: 10.2147/NDT.S58841

37. Otowa T., Hek K., Lee M., Byrne E.M., Mirza S.S., Nivard M.G., Bigdeli T., … Maher B.S., van den Oord E.J., Wray N.R., Tiemeier H., Hettema J.M. Meta­analysis of genome­wide association studies of anxiety disorders. Mol Psychiatry. 2016;21(10):1391-1399. doi: 10.1038/mp.2015.197

38. Penninx B.W., Pine D.S., Holmes E.A., Reif A. Anxiety disorders. Lancet. 2021;397(10277):914-927. doi: 10.1016/S0140-6736(21)00359­7

39. Petrican R., Fornito A., Boyland E. Lifestyle factors counteract the neurodevelopmental impact of genetic risk for accelerated brain aging in adolescence. Biol Psychiatry. 2024;95(5):453-464. doi: 10.1016/j.biopsych.2023.06.023

40. Purves K.L., Coleman J.R.I., Meier S.M., Rayner C., Davis K.A.S., Cheesman R., Bækvad-Hansen M., Børglum A.D., Wan Cho S., Jürgen Deckert J., Gaspar H.A., Bybjerg-Grauholm J., Hettema J.M., Hotopf M., Hougaard D., Hübel C., Kan C., McIntosh A.M., Mors O., Bo Mortensen P., Nordentoft M., Werge T., Nicodemus K.K., Mat­theisen M., Breen G., Eley T.C. A major role for common genetic variation in anxiety disorders. Mol Psychiatry. 2020;25(12):3292-3303. doi: 10.1038/s41380-019-0559-1

41. Schinka J.A., Busch R.M., Robichaux-Keene N. A meta-analysis of the association between the serotonin transporter gene polymorphism 5-HTTLPR and trait anxiety. Mol Psychiatry. 2004;9(2):197-202. doi: 10.1038/sj.mp.4001405

42. Sen S., Burmeister M., Ghosh D. Meta-analysis of the association between a serotonin transporter promoter polymorphism 5- HTTLPR and anxiety­related personality traits. Am J Med Genet. 2004; 127B(1):85-89. doi: 10.1002/ajmg.b.20158

43. Shin D., Gong J.-R., Jeong S.D., Cho Y., Kim H.-P., Kim T.-Y., Cho K.­ H. Attractor landscape analysis reveals a reversion switch in the transition of colorectal tumorigenesis. Adv Sci. 2024:2412503. doi: 10.1002/advs.202412503

44. Stein D.J., Bouwer C. A neuro-evolutionary approach to the anxiety disorders. J Anxiety Disord. 1997;11(4):409-429. doi: 10.1016/s0887-6185(97)00019-4

45. Strom N.I., Verhulst B., Bacanu S.A., Cheesman R., Purves K.L., Gedik H., Mitchell B.L., … Million Veteran Program, FinnGen, 23andMe; Deckert J., Eley T.C., Mattheisen M., Hettema J.M. Genome-wide association study of major anxiety disorders in 122,341 European-ancestry cases identifies 58 loci and highlights GABAergic signaling. medRxiv. 2024. doi: 10.1101/2024.07.03.24309466

46. Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P., Kuhn M., Bork P., Jensen L.J., von Mering C. STRING v10: protein-­protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447-D452. doi: 10.1093/nar/gku1003

47. Vandamme T.F. Use of rodents as models of human diseases. J Pharm Bioallied Sci. 2014;6(1):2-9. doi: 10.4103/0975-7406.124301

48. Van Oekelen D., Luyten W.H., Leysen J.E. 5-HT2A and 5-HT2C recep­tors and their atypical regulation properties. Life Sci. 2003;72(22): 2429-2449. doi: 10.1016/s0024-3205(03)00141-3


Review

Views: 312


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)