Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Молекулярно-генетические механизмы формирования окраски плодов и семян растений

https://doi.org/10.18699/VJ15.073

Аннотация

Разнообразная окраска плодов и семян растений определяется наличием двух важных типов пигментов – каротиноидов (красная, оранжевая, желтая) и антоцианов (фиолетовая, синяя, красная). Они принадлежат к двум группам вторичных метаболитов – изопреноидам и флавоноидам. В последнее время наблюдается повышенный интерес к изучению генетических механизмов, контролирующих признаки окраски у растений, в связи с антиоксидантными и антимикробными свойствами определенных пигментов и их бесцветных предшественников, употребляемых c растительной пищей. Гены, кодирующие ферменты, необходимые для последовательных превращений исходных органических молекул в конечные пигментные соединения, относят к группе структурных генов. Факторы, активирующие экспрессию структурных генов и контролирующие синтез определенных пигментов в конкретный момент времени в какой-либо части растения, относят к регуляторным генам биосинтеза. Накопленные к настоящему моменту данные в области генетики растений свидетельствуют о том, что наблюдаемое на фенотипическом уровне межвидовое и внутривидовое разнообразие по признакам окраски связано именно с регуляторными генами. Создание в предшествующие годы богатых коллекций и точных генетических моделей по признакам окраски у двудольных и однодольных растений, а также развитие молекулярно-генетических методов исследования растений позволили детально изучить механизмы генетической регуляции синтеза пигментных соединений на молекулярном уровне. В данной статье особенности регуляции биосинтеза каротиноидов проиллюстрированы на примере их образования в плодах семейства Solanaceae. Генетическая регуляция синтеза различных флавоноидных пигментов показана на примере изучения окраски семян у растений семейства Poaceae. В заключительной части работы обсуждается перспектива практического использования регуляторных генов, контролирующих окраску плодов и семян, приводятся конкретные примеры их применения в селекции овощных и злаковых культур.

Об авторах

В. Ф. Аджиева
Государственное научное учреждение «Институт генетики и цитологии НАН Беларуси», Минск, Беларусь
Беларусь


О. Г. Бабак
Государственное научное учреждение «Институт генетики и цитологии НАН Беларуси», Минск, Беларусь
Беларусь


О. Ю. Шоева
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


А. В. Кильчевский
Государственное научное учреждение «Институт генетики и цитологии Национальной академии наук Беларуси», Минск, Беларусь
Беларусь


Е. К. Хлесткина
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет», Новосибирск, Россия
Россия


Список литературы

1. Алехина Н.Д., Балнокин Ю.В., Гавриленко В.Ф. Каротиноиды. Физиология растений. Под ред. И.П. Ермакова. М.: Академия, 2005.

2. Гордеева Е.И., Хлесткина Е.К. Взаимосвязь между накоплением антоцианов в перикарпе зерна пшеницы и реакцией на искусственное старение семян. Матер. науч.-практ. конф. «Свободные радикалы и антиоксиданты в химии, биологии и медицине». 1–4 октября 2013 г. Новосибирск.

3. Ершов Ю.В. Метилэритритолфосфатный (немевалонатный) путь биосинтеза каротиноидов. Усп. биол. химии. 2005;45:307-354.

4. Запрометов М.Н. Основы биохимии фенольных соединений. М.: Выс. шк., 1974.

5. Кильчевский А.В., Бабак О.Г., Аджиева В.Ф., Некрашевич Н.А., Малышев С.В., Грушецкая З.Ф., Мишин Л.А., Добродькин М.М., Зайцева И.Е., Пугачева И.Г. Молекулярные технологии в селекции томата (Solanum lycopersicum L.). Генетические основы селекции растений. Т. 4. Минск, 2014.

6. Стржалка К., Кострецка-Гугала А., Латовски Д. Каротиноиды растений и стрессовое воздействие окружающей среды: роль модуляции физических свойств мембран каротиноидами. Физиол. растений. 2003;50(2):188-193.

7. Хлесткина Е.К., Шоева О.Ю., Гордеева Е.И. Гены биосинтеза флавоноидов пшеницы. Вавиловский журнал генетики и селекции. 2014;18(4/1):784-796.

8. Akhtar M.S., Goldschmidt E.E., John I., Rodoni S., Matile P., Grierson. Altered patterns of senescence and ripening in gf, a staygreen mutant of tomato (Lycopersicon esculentum Mill.). J. Exp. Bot. 1999;50(336):1115-1122.

9. Al-Babili S., Beyer P. Golden rice – five years on the road – five years to go? Trends in Plant Sci. 2005;10:565-573.

10. Ashraf N., Jain D., Vishwakarma R.A. Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 fromCrocus: a novel regulator of apocarotenoid biosynthesis. BMC Plant Biology. 2015;15(25):1-12.

11. Barry C., McQuinn R., Chung M., Besuden A., Giovannoni J.J. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol. 2008;147:179-187.

12. Barry C.S. The stay-green revolution: Recent progress in deciphering the mechanisms of chlorophyll degradation in higher plants. Plant Sci. 2009;176:325-333.

13. Bernhardt C., Lee M.M., Gonzalez A., Zhang F., Lloyd A., Schiefelbein J. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development. 2003;130:6431-6439.

14. Borevitz J.O., Xia Y., Blount J., Dixon R.A., Lamb C. Activation tagging identified a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell. 2000;12:2383-2393.

15. Boss P.K., Davies C., Robinson S.P. Expression of anthocyanin biosynthesis genes in red and white grapes. Plant Mol. Biol. 1996;32: 565-569.

16. Bramley P.M. Regulation of carotenoid formation during tomato fruit ripening and development. J. Exp. Bot. 2002;53(377):2107-2113.

17. Britton G. The Biochemistry of Natural Pigments. Cambridge: Cambridge Univ. Press, 1983.

18. Burr F.A., Burr B., Scheffler B.E., Blewitt M., Wienand U., Matz E.C. The maize repressor-like gene intensifierl shares homology with the rVb7 multigene family of transcription factors and exhibits missplicing. Plant Cell. 1996;8:1249-1259.

19. Caspi N., Levin I., Chamovitz D.A., Reuveni M. A mutation in the tomato DDB1 gene affects cell and chloroplast compartment size and CDT1 transcript. Plant Signal Behavior. 2008;3(9):641-649.

20. Cazzonelli C.I., Pogson B.J. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 2010;15(5):266-274.

21. Cha K.W., Lee Y.J., Koh H.J., Lee B.M., Nam Y.M., Paek N.C. Isolation, characterization, and mapping of the stay green mutant in rice. Theor. Appl. Genet. 2002;104:526-532.

22. Chandler V.L., Radicella J.P., Robbins T.P., Chen J., Turks D. Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences. Plant Cell. 1989;1: 1175-1183.

23. Chung M.Y., Vrebalov J., Alba R., Lee J., McQuinn R., Chung J.D., Klein P., Giovannoni J. A tomato (Solanum lycopersicum) APETALA2/ERF gene (SIAP2a), is a negative regulator of fruit ripening. Plant J. 2010;64:936-947.

24. Clegg M.T., Durbin M.L. Flower color variation: A model for the experimental study of evolution. Proc. Natl Acad. Sci. USA. 2000;97: 7016-7023.

25. Cockram J., White J., Zuluaga D.L., Smith D., Comadran J., Macaulay M., Luo Z., Kearsey M.J., Werner P., Harrap D., Tapsell C., Liu H., Hedley P.E., Stein N., Schulte D., Steuernagel B., Marshall D.F., Thomas W.T.B., Ramsay L., Mackay I., Balding D.J., The AGOUEB Consortium, Waugh R., O’Sullivan D.M. Genomewide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc. Natl Acad. Sci. USA. 2010;107(50):21611-21616.

26. Cone K.C., Burr F.A., Burr B. Molecular analysis of the maize anthocyanin regulatory locus C1. Proc. Natl Acad. Sci. USA. 1986;83: 9631-9635.

27. Consonni G., Geuna F., Gavazzi G., Tonelli C. Molecular homology among members of the R gene family in maize. Plant J. 1993;3: 335-346.

28. Cutanda-Perez M.C., Ageorges A., Gomez C., Vialet S., Terrier N., Romieu C., Torregrosa L. Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol. Biol. 2009;69:643-648.

29. de Vetten N., Quattrocchio F., Mol J., Koes R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants and animals. Gene Dev. 1997;11:1422-1434.

30. Deluc L., Barrieu F., Marchive C., Lauvergeat V., Decendit A., Richard T., Carde J.P., Mérillon J.M., Hamdi S. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol. 2006;140:499-511.

31. Deluc L., Bogs J., Walker A.R., Ferrier T., Decendit A., Mérillon J.M., Robinson S.P., Barrieu F. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol. 2008;147: 2041-2053.

32. Dobrovolskaya O.B., Arbuzova V.S., Lohwasser U., Röder M.S., Börner A. Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica. 2006;150:355-364.

33. Dooner H.K. Coordinate genetic regulation of flavonoid biosynthetic enzymes in maize. Mol. Gen. Genet. 1983;189:136-141.

34. Dubos C., Le Gourrierec J., Baudry A., Lanet E., Debeaujon I., Routaboul J.-M., Alboresi A., Weisshaar B., Lepiniec L. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J. 2008;55:940-953.

35. Ferrandiz C., Liljegren S., Yanofsky M. FRUITFULL negatively regulates the SHATTERPROOF genes during Arabidopsis fruit development. Science. 2000;289:436-438.

36. Ferrandiz C., Pelaz S., Yanofsky M.F.Control of carpel and fruit development in Arabidopsis. Annu. Rev. Biochem. 1999; 68:321-354.

37. Fitter D.W., Martin D.J., Copley M.J., Scotland R.W., Langdale J.A. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J. 2002;31:713-727.

38. Flesch G., Rohmer M. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur. J. Biochem. 1988;175:405-411.

39. Freed R.D., Everson E.H., Ringlund K., Gullord M. Seedcoat color in wheat and the elationship to seed dormancy and maturity. Cereal Res. Commun. 1976;4:147-149.

40. Fujisawa M., Nakano T., Ito Y. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biol. 2011;11(26):1-16.

41. Giliberto L., Perrotta G., Pallara P., Weller J., Fraser P.D., Bramley P.M., Fiore A., Tavazza M., Giovanni G. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 2005;137:199-208.

42. Giovannoni J.J. Genetic regulation of fruit development and ripening. Plant Cell. 2004;16:170-180.

43. Goff S.A., Klein T.M., Roth B.A., Fromm M.E., Cone K.C., Radicella J.P., Chandler V.L. transactivation of anthocyanin biosynthetic genes following transfer of B regulating genes into maize tissue. EMBO J. 1990;9:2517-2522.

44. Gonzalez A., Zhao M., Leavitt J.M., Llyod A.M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2008;53: 814-827.

45. Gordeeva E.I., Shoeva O.Y., Khlestkina E.K. Marker-assisted development of bread wheat near-isogenic lines carrying various combinations of Pp (purple pericarp) alleles Euphytica. 2015;203:469-476.

46. Heim M.A., Jakoby M., Werber M., Martin C., Weisshaar B., Bailey P.C. The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 2003;20:735-747.

47. Hichri I., Heppel S.C., Pillet J., Leon C., Czemmel S., Delrot S., Lauvergeat V., Bogs J. The basic helix – loop – helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol. Plant. 2010;3:509-523.

48. Himi E., Nisar A., Noda K. Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat. Genome. 2005;48:747-754.

49. Himi E., Noda K. Red grain colour gene (R) of wheat is a Myb-type transcription factor. Euphytica. 2005;143:239-242.

50. Himi E., Taketa S. Isolation of candidate genes for the barley Ant1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues. Mol. Genet. Genomics. 2015;290:1287-1298.

51. Hirschberg J. Carotenoid biosynthesis in flowering plants. Current Opinion Plant Biol. 2001;4:210-218.

52. Hu J., Anderson B., Wessler R. Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize. Genetics. 1996;142:1021-1031.

53. Hu J., Reddy V.S., Wessler S.R. The rice R gene family: two distinct subfamilies containing several miniature inverted repeat transposable elements. Plant Mol. Biol. 2000;42:667-678.

54. Itkin M., Seybold H., Breitel D., Rogachev I., Meir S., Aharoni A. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J. 2009;60:1081-1095.

55. Jana B.K., Mukherjee S.K. Notes on the distribution of phytomelanin layer in higher plants – a short communication. J. Pharmaceutical Biol. 2014;4:131-132.

56. Johnson E.J. The role of carotenoids in human health. Nutr. Clin. Care. 2002;5:56-65.

57. Jung H.-J., Manoharan R.K., Park J.-I., Chung M.-Y., Lee J., Lim Y.-P., Hur Y., Nou I.-S. Identification of yellow pigmentation genes in Brassica rapa ssp. Pekinensis using Br300 microarray. Int. J. Genomics. 2014;2014:1-12.

58. Kachanovsky D., Filler S., Isaacson T., Hirschberg J. Epistasis in tomato color mutations involves regulation of phytoenesynthase 1 expression by cis-carotenoids. Proc. Natl Acad. Sci. USA. 2012;109(46): 19021-19026.

59. Karlova R., Rosin F.M., Busscher-Lange J., Parapunova V., Do P.T.,Fernie A.R., Fraser P.D., Baxter C., Angenent G.C., de Maagd R.A.Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell. 2011;23:923-941.

60. Kerr E.A. Green flesh, gf. Rpt. Tomato Genet. Coop. Rep. 1956;6(17).

61. Khlestkina E.K. Regulatory-target gene relationships in allopolyploid and hybrid genomes. Ed. K.V. Urbano. Adv. Genetics Res. V. 3. NOVA Science Publishers, Inc, USA, 2010.

62. Khlestkina E.K. The adaptive role of flavonoids: emphasis on cereals. Cereal Res. Commun. 2013;41:185-198.

63. Khlestkina E.K. Current applications of wheat and wheat-alien precise genetic stocks. Mol. Breeding. 2014;34:273-281. DOI: 10.1007/s11032-014-0049-8

64. Khlestkina E.K., Gordeeva E.I., Arbuzova V.S. Molecular and functionalcharacterization of wheat near-isogenic line ‘i:S29Ra’ having intensive anthocyanin pigmentation of the coleoptile, culm, leaves and auricles. Plant Breeding. 2014;133:454-458.

65. Khlestkina E.K., Pestsova E.G., Röder M.S., Börner A. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2002;104:632-637.

66. Khlestkina E.K., Pshenichnikova T.A., Röder M.S., Börner A. Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Res. Commun. 2009;37:391-398.

67. Khlestkina E.K., Röder M.S., Börner A. Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploidwheat (Triticum durum L.). Euphytica. 2010;171:65-69.

68. Khlestkina E.K., Röder M.S., Salina E.A. Relationship between homoeologous regulatory and structural genes in allopolyploid genome – a case study in bread wheat. BMC Plant Biology. 2008; 8:88.

69. Kobayashi S., Ishimaru M., Hiraoka K., Honda C. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta. 2002;215:924-933.

70. Kolotilin I., Koltai H., Tadmor Y., Bar-Or C., Reuveni M., Meir A., Nahon S., Shlomo H., Chen L., Levin I. Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol. 2007;145:389-401.

71. Kopsell D.A., Kopsell D.E. Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends Plant Sci. 2006;11(10): 499-507.

72. Lee J.M., Joung J.-G., McQuinn R., Chung M.-Y., Fei Z., Tieman D., Klee H., Giovannoni J. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J. 2012;70:191-204.

73. Li W.L., Faris J.D., Chittoor J.M., Leach J.E., Hulbert S.H., Liu D.J., Chen P.D., Gill B.S. Genomic mapping of defense response genes in wheat. Theor. Appl. Genet. 1999;98:226-233.

74. Lila A.M. Anthocyanins and human health: An in vitro investigative approach. J. Biomed. Biotechnol. 2004;2004(5):306-313.

75. Lin Z., Hong Y., Yin M., Li C., Zhang K., Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J. 2008;55:301-310.

76. Liu Y.S., Gur A., Ronen G., Causse M., Damidaux R., Buret M., Hieschberg J., Zamir D. There is more to tomato fruit color than candidate carotenoid. Plant Biotechnol. J. 2003;1:195-207.

77. Liu Y., Roof S., Ye Z., Barry C., Van Tuinent A., Vrebalov J., Bowler C., Giovannoni J. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Natl Acad. Sci. USA. 2004;26:9897-9902.

78. Lloyd A.M., Walbot V., Davis R.W. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science. 1992;258:1773-1775.

79. Ludwig S.R., Habera L.F., Dellaporta S.L., Wessler S.R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl Acad. Sci. USA. 1989;86:7092-7096.

80. Manning K., Tor M., Poole M., Hong Y., Thompson A., King G., Giovannoni J., Seymour G. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 2006;38(8):948-952.

81. Martel C., Vrebalov J., Tafelmeyer P., Giovannoni J.J. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol.2011;157:1568-1579.

82. Martin C., Prescott A., Mackay S., Bartlett J., Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J.1991;1:37-49.

83. Matsui K., Umemura Y., Ohme-Takagi M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J. 2008;55:954-967.

84. Matus J.T., Poupin M.J., Cañón P., Bordeu E., Alcalde J.A., ArceJohnson P. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol. Biol. 2010;72: 607-620.

85. McClintock B. Controlling elements and the gene. Cold Spring Harbor Symp Quant. Biol. 1956;21:197-216.

86. Middleton E. Jr., Kandaswami C., Theoharides T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000;52:673-751.

87. Nakamura H., Muramatsu M., Hakata M., Ueno O., Nagamura Y., Hirochika H., Takano M., Ichikawa H. Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells. Plant Cell Physiol. 2009;50(11):1933-1949.

88. Nesi N., Debeaujon I., Jond C., Pelletier G., Caboche M., Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques.Plant Cell. 2000;12:1863-1878.

89. Nguyen C.V., Vrebalov J.T., Gapper N.E., Zheng Y., Zhong S., Fei Z., Giovannoni J.J. Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening. Plant Cell. 2014;26:585-601.

90. Orfila C., Huisman M.M.H., Willats W.G.T., van Alebeek G.J.W.M., Schols H.A., Seymour G.B., Knox J.P. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Puranta. 2002;215(3):440-447. DOI: 10.1007/s00425-002-0753-1

91. Osorio S. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions plant physiology. Plant Physiol. 2011;157: 405-425.

92. Palmieri S., Martiniello P., Soressi G.P. Chlorophyll and carotene content in high pigment and green flesh fruits. Rep. Tomat. Genet. Coop. 1978;28:10.

93. Pan I.L., McQuinn R., Giovannoni J.J., Irish V.F. Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. J. Exp. Bot. 2010;61:1795-1806.

94. Park H., Kreunen S.S., Cuttriss A.J., Dellapenna D., Pogson B.J. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell. 2002;14:321-332.

95. Park K. A bHLH protein partially controls proanthocyanidin and phytomelanin pigmentation in the seed coats of morning glory Ipomoea tricolor. Hort. Environ. Biotechnol. 2012;53:304-309.

96. Park S.Y., Yu J.W., Park J.S., Li J., Yoo S.C., Lee N.Y., Lee S.K., Jeong S.W., Seo H.S., Koh H.J., Jeon J.S., Park Y.I., Paek N.C. The senescence-induced stay-green protein regulates chlorophyll degradation. Plant Cell. 2007;19:1649-1664.

97. Paz-Ares J., Ghosal D., Wienand U., Peterson P.A., Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 1987;6:3553-3558.

98. Pelletier M.K., Shirley B.W. Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings. Coordinate regulation with chalcone synthase and chalcone isomerase. Plant Physiol. 1996;111:339-345.

99. Petroni K., Cominelli E., Consonni G., Gusmaroli G., Gavazzi G., Tonelli C. The developmental expression of the maize regulatory gene Hopi determines germination-dependent anthocyanin accumulation. Genetics. 2000;155:323-336.

100. Petroni K., Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci. 2011;181:219-229.

101. Powell A.L., Nguyen C.V., Hill T., Cheng K.L., Figueroa-Balderas R., Aktas H. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science. 2012;336:1711-1715.

102. Quattrocchio F., Wing J.F., Leppen H.T.C., Mol J.N.M., Koes R.E. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell. 1993;5:1497-1512.

103. Quattrocchio F., Wing J.F., van der Woude K., Mol J.N.M., Koes R. Analysis of bHLH and MYB domain proteins: species specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J. 1998;13:475-488.

104. Quattrocchio F., Wing J., van der Woude K., Souer E., de Vetten N., Mol J., Koes R. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell. 1999;11:1433-1444.

105. Quattrocchio F., Verweij W., Kroon A., Spelt C., Mol J., Koes R. PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix–loop–helix transcription factors of the anthocyanin pathway. Plant Cell. 2006;18:1274-1291.

106. Rausher M.D. The evolution of flavonoids and their genes. Ed. P.E. Grotewold. The Science of Flavonoids. N.Y.: Springer, 2008.

107. Reddy V.S., Scheffler B.E., Wienand U., Wessler S.R., Reddy A.R. Cloning and characterization of the rice homologue of the maize C1 anthocyanin regulatory gene. Plant Mol. Biol. 1998;36:497-498.

108. Ríos G., Naranjo M.A., Rodrigo M.-J., Alós E., Zacarías L., Cercós M., Talón M. Identification of a GCC transcription factor responding to fruit colour change events in citrus through the transcriptomic analyses of two mutants. BMC Plant Biol. 2010;10(276):1-14.

109. Rossini L., Cribb L., Martin D.J., Langdale J.A. The maize golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell. 2001;13:1231-1244.

110. Saitoh K., Onishi K., Mikami I., Thidar K., Sano Y. Allelic diversification at the C (OsC1) locus of wild and cultivated rice: nucleotide changes associated with phenotypes. Genetics. 2004;7:997-1007.

111. Sakamoto W., Ohmori T., Kageyama K., Miyazaki C., Saito A., Murata M., Noda K., Maekawa M. The Purple leaf (Pl) locus of rice: the Plw allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol. 2001;42:982-991.

112. Sasaki K., Takahashi T. A flavonoid from Brassica rapa flower as the UV-absorbing nectar guide. Phytochemistry. 2002;61:339-343.

113. Selinger D.A., Chandler V.L. A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway. Plant Cell. 1999;11:5-14.

114. Shoeva O.Y., Gordeeva E.I., Khlestkina E.K. The regulation of anthocyanin synthesis in the wheat pericarp. Molecules. 2014;19:20266-20279. DOI: 10.3390/molecules191220266

115. Shoeva O.Yu., Kukoeva T.V., Börner A., Khlestkina E.K. Barley Ant1 is a homolog of maize C1 and its product is part of the regulatory machinery governing anthocyanin synthesis in the leaf sheath. Plant Breeding. 2015

116. Spelt C., Quattrocchio F., Mol J., Koes R. Anthocyanin1 of petunia encodes a basic helix–loop–helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell. 2000;12: 1619-1631.

117. Strack D., Vogt T., Schliemann W. Recent advances in betalain research. Phytochemistry. 2003;62:247-269.

118. Sun H., Fan H.-J., Ling H.-Q. Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics. 2015;16(9):1-12.

119. Tadiello A., Pavanello A., Zanin D., Caporali E., Colombo L., Rotino G.L., Trainotti L., Casadoro G. A PLENA-like gene of peach is involved in carpel formation and subsequent transformation into a fleshy Fruit. J. Exp. Bot. 2009;60:651-661.

120. Taylor L.P., Briggs W.R. Genetic regulation and photocontrol of anthocyanin accumulation in maize seedlings. Plant Cell. 1990;2: 115-127.

121. Tereshchenko O.Y., Arbuzova V.S., Khlestkina E.K. Allelic state of the genes conferring purple pigmentation in different wheat organs predetermines transcriptional activity of the anthocyanin biosynthesis structural genes. J. Cereal Sci. 2013;57:10-13.

122. Toledo-Ortiz G., Huq E., Rodríguez-Concepción M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. PNAS. 2010;107(25):11626-11631.

123. Vrebalov J., Pan I.L., Arroyo A.J.M., McQuinn R., Chung M., Poole M. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell. 2009;21:3041-3062.

124. Vrebalov J., Ruezinsky D., Padmanabhan V., White R., Medrano D., Drake R., Giovannoni J. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science. 2002;296:343-345.

125. Walker A.R., Davison P.A., Bolognesi-Winfield A.C., James C.M., Srinivasan N., Blundell T.L., Esch J.J., Marks M.D., Gray J.C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell. 1999;11:1337-1350.

126. Walker A.R., Lee E., Bogs J., McDavid D.A., Thomas M.R., Robinson S.P. White grapes arose through the mutation of two similar and adjacent regulatory gene. Plant J. 2007;49:772-785.

127. Welsch R., Maass D., Voegel T., Dellapenna D., Beyer P. Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol.2007;145:1073-1085.

128. Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 2001;126:485-493.

129. Zhang F., Gonzalez A., Zhao M., Payne T., Llyod A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development. 2003;130:4859-4869.


Рецензия

Просмотров: 1694


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)