Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Effects of limited introgressions from Triticum timopheevii Tausch. into the genome of bread wheat (Triticum aestivum L.) on physiological and biochemical traits under normal watering and drought

https://doi.org/10.18699/VJ15.074

Abstract

Alien hybridization in cereals is used for comparative investigations of genome structure and evolution as well as for extracting useful genes from the wild gene pool. The tetraploid species Triticum timopheevii has long been used as a source of genes for resistance to fungal diseases. Line 821 was developed on the genetic background of cultivar Saratovskaya 29 (S29), which is drought-resistant but is very susceptible to diseases and carries big introgressions in 2A and 2B chromosomes and a small introgression in the subtelomeric region of 5A chromosome. The two genotypes were compared for the parameters associated with direct and indirect reaction of the photosynthetic apparatus to water stress. In flag leaves of 821 line, an increased transpiration rate and stomatal conductance (1.6 times the value in optimal watering and 1.2 times the value under water deficit) and, correspondingly, reduced water use efficiency were found compared to the initial cultivar. Additionally, the actual effectiveness and electron transport rate of photosystem II and chlorophyll and carotenoid content were reduced as well as the total antioxidant capacity (approximately three-fold) under water stress. Under the same conditions, lipoxygenase activity was increased two-fold. On the whole, water deficit tolerance was decreased in the line in comparison with the parental cultivar and was accompanied by leaf senescence. Thus, it may be supposed that 2A, 2B and 5A chromosomes of the drought-tolerant cultivar S29 carry important genetic factors responsible for reaction to water stress in wheat plants.

About the Authors

T. A. Pshenichnikova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


A. V. Permyakov
Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk, Russia
Russian Federation


S. V. Osipova
Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk, Russia Irkutsk State University, Irkutsk, Russia
Russian Federation


M. D. Permyakova
Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk, Russia
Russian Federation


E. G. Rudikovskaya
Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk, Russia
Russian Federation


V. V. Verchoturov
National Research Irkutsk State Technical University, Irkutsk, Russia
Russian Federation


References

1. Бухов Н.Г. Динамическая световая регуляция фотосинтеза. Физиология растений. 2004;51(6):825-837.

2. Давыдов В.А. Количественные характеристики устьичного аппарата растений яровой пшеницы сорта Саратовская 29 при остром дефиците воды. Сельскохозяйственная биология. 2007;5:90-93.

3. Жуковский П.М., Мигушова Э.Ф. Наиболее высокоиммунный эндемичный генофонд для выведения устойчивых сортов пшеницы путем отдаленной гибридизации. Вестн. с.-х. науки. 1969; 2:9-20.

4. Журбицкий З.И. Теория и практика вегетационного метода. М.: Наука, 1968.

5. Иванов Б.Н. Роль аскорбиновой кислоты в фотосинтезе (обзор). Биохимия. 2014;79(3):364-372.

6. Ильина Л.Г. Селекция яровой мягкой пшеницы на Юго-Востоке. Саратов: Изд-во Саратовского ун-та, 1989.

7. Леонова И.Н., Родер М.С., Калинина Н. П., Будашкина Е.Б. Генетический анализ и локализация локусов, контролирующих устойчивость интрогрессивных линий Triticum aestivum × Triticum timopheevii к листовой ржавчине. Генетика. 2008;44:1652-1659.

8. Обухова Л.В., Будашкина Е.Б., Ермакова М.Ф., Калинина Н.П., Шумный В.К. Качество зерна и муки у интрогрессивных линий мягкой пшеницы с генами устойчивости к листовой ржавчине от Triticum timopheevii Zhuk. C.-х. биология. 2008;5:38-42.

9. Пермякова М.Д., Труфанов В.А., Пшеничникова Т.А., Ермакова М.Ф. Роль липоксигеназы в определении качества зерна пшеницы. Прикладная биохимия и микробиология. 2010;46(1):96-102.

10. Полесская О.Г., Каширина Е.И., Алехина Н.Д. Изменение активности антиоксидантных ферментов в листьях и корнях пшеницы в зависимости от формы и дозы азота в среде. Физиол. растений. 2004;51(5):686-691.

11. Тимонова Е.М., Леонова И.Н., Белан И.А., Россеева Л.П., Салина Е.А. Влияние отдельных участков хромосом Triticum timopheevii на формирование устойчивости к болезням и количественные признаки мягкой пшеницы. Вавил. журн. генет. и селекции. 2012;16(1):142-159.

12. Aebi H. Catalase in vitro. Meth. Enzymol. 1984;105:121-126.

13. Arbuzova V.S., Efremova T.T., Laikova L.I., Maystrnko O.I., Popova M., Pshenichnikova T.A. The development of precise genetic stocks in two wheat cultivars and their use in genetic analysis. Euphytica. 1996;89:11-15.

14. Asada K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1999;50:601-639.

15. Baier M., Noctor G., Foyer C., Dietz K.J. Antisense suppression of 2-cysteine peroxiredoxinin Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol. 2000;124:823-832.

16. Bartoli C.G., Guiamet J.J., Kiddle G., Pastori G.M., Cagno R.D., Theodoulou F.L., Foyer C.H. Ascorbate content of wheat leaves is not determined by maximal l-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant, Cell Env. 2005;28:1073-1081.

17. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 1976;72:248-254.

18. Budashkina E. Cytogenetic study of introgressive disease-resistant common wheat lines. Tag. Ber. Acad. Landwirtsch. Wiss. DDR. 1988;206:209-212.

19. Budashkina E.B., Kalinina N.P. Development and genetic analysis of common wheat introgressive lines resistant to leaf rust. Acta Phytopathol. Entomol. 2001;36:61-65.

20. de Lamotte F., Vianey-Liaud N., Duviau M., Kobrehel K. Glutathione reductase in wheat grain. 1. Isolation and Characterization. J. Agric. Food Chem. 2000;48:4978-4983. DOI: 10.1021/jf0003808

21. Ehdaie B., Whitkus R.N., Waines S.G. Root biomass, water-use efficiency and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat «Pavon». Crop Sci. 2003;43:710-717.

22. Foyer C.H., Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011;155: 93-100.

23. Gallie D.R. L-Ascorbic Acid: A multifunctional molecule supporting plant growth and development. Scientifica. 2013;2013. Article ID 795964, 24 p. DOI:10.1155/2013/795964

24. Giannopolitis C.N., Ries S.K. Superoxide Dismutase. 1. Occurrence in Higher Plants. Plant Physiol. 1977;59:309-314.

25. Jarén-Galán M., Minguez-Mosquera M.I. β-caroten and capsanthin cooxidation by lipoxygenase. Kinetic and Thermodynamic aspects of the reaction. J. Agric. Food Chem. 1997;45:4814-4820.

26. Leonova I.N., Kalinina N.P., Budashkina E.B., Röder M.S., Salina E.A.Comparative molecular and genetic analysis of Triticum aestivum × Triticum timopheevii hybrid lines resistant to leaf rust. EWAC Newslett. 2001. Proc. 11th EWAC Conf., Novosibirsk, Russia, 24–28 July, 2000. Ed. T.A. Pshenichnikova, A.J. Worland.

27. Li W.L., Faris J.D., Chittoor J.M., Leach J.E., Hulbert S.H., Liu D.J., Chen P.D., Gill B.S. Genomic mapping of defense response genes in wheat. Theor. Appl. Genet. 1999;98:226-233.

28. Luna C., Pastory G., Driscoll S., Groten K. Drought control on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J. Exp. Bot. 2005;56:417-423. DOI: 10.1093/jxb/eri039

29. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J, Morris C, Appels R., XC Xia Catalogue of Gene Symbols for Wheat. 2013. 12th Intern. Wheat Genet. Symp., 8–13 September 2013, Yokohama, Japan.

30. Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981; 22:867-880.

31. Neuman P.R., Hart G.E. Genetic control of the mitochondrial form of superoxide dismutase in hexaploid wheat. Biochem. Genetics. 1986; 24:435-446.

32. Osipova S.V., Permyakov A.V., Permyakova M.D., Pshenichnikova T.A., Genaev M.A., Börner A. The antioxidant enzymes activity in leaves of inter-varietal substitution lines of wheat (Triticum aestivum L.) with different tolerance to soil water deficit. Acta Physiol. Plant. 2013;35:2455-2465.

33. Qi L., Friebe B., Zhang P., Gill B.S. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 2007;15:3-19.

34. Rabinovich S.V. Importance of wheat-rye translocation for breeding modern cultivars of Triticum aestivum L. Euphytica. 1998;100: 323-340.

35. Salina E.A., Leonova I.N., Efremova T.T., Röder M.S. Wheat genome structure: translocations during the course of polyploidization. Funct. Integr. Genomics. 2006;6:71-80.

36. Schaller F. Enzymes of biosynthesis of octadecanoid-derived signaling molecules. J. Exp. Bot. 2001;52(354):11-23.

37. Shinozaki K., Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J. Expt. Bot. 2007;58:221-227. DOI: 10.1093/jxb/erl164

38. Wettstein D. Chlorophyll-letale und der submikroskopische form wechsel der Plastiden. Exp. Cell Res. 1957;12:427–506.


Review

Views: 730


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)