Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Relationships between the allozyme and phenotypic diversities of Picea ajanensis populations

https://doi.org/10.18699/VJ15.075

Abstract

The structures of Picea ajanensis populations were compared based on allozyme analysis of vegetative buds and morphometric analysis of generative organs. Six cenopopulations of P. ajanensis were investigated in areas with various levels of volcanic impact in the Kamchatka Peninsula. The genetic structures of spruce populations and phenotypes were determined by analysis of ten enzyme systems (PGM, GOT, HK, LAP, MDH, SKDH, IDH, GDH, PGI and SOD). Phenotypic variability of spruce populations was estimated based on the composition of morphotypes that were identified by using geometric morphometrics of cone-scale shapes. Pairwise comparison of samples of cones from 170 trees from six populations revealed 12 morphotypes differing in the shape of cone scales. Comparative assessment of variability and similarity of populations was carried out based on the frequency of occurrence of phenotypes and frequency of alleles of polymorphic loci. Correlations of the genetic and phenotypic distance matrices between different phenotypes were revealed. This observation was consistent with the genetic determination of the shape of cone scales in spruce. Genetic differences between the morphotypes with regard to nine polymorphic loci (Got-2, Skdh-1, Idh-2, Pgm-2, Mdh-1, Mdh-3, Pgm- 1, Pgi-2, and Hk) were not significant. Statistically significant differences between the morphotypes were revealed for two loci: Pgm-2 and Mdh-1. Differences in the genetic diversity of spruce populations generally corresponded to differences in their phenotypic diversity. The high levels of genetic and phenotypic diversity characterized a stable population structure of spruce in the area of weak volcanic influence. Changes in the genetic structure and low levels of the phenotypic diversity of spruce were observed under catastrophic volcanic impact.

About the Authors

V. P. Vetrova
Kamchatka Branch of the Pacific Geographical Institute Far East Branch of the RAS, Petropavlovsk-Kamchatsky, Russia
Russian Federation


A. K. Ekart
V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
Russian Federation


A. N. Kravchenko
V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
Russian Federation


A. Ya. Larionova
V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
Russian Federation


References

1. Алтухов Ю.П. Генетические процессы в популяциях. М., 2003.

2. Айала Ф. Введение в популяционную и эволюционную генетику. М., 1984.

3. Ветрова В.П., Кравченко А.Н., Ларионова А.Я., Экарт А.К. Генетическая и фенотипическая изменчивость ели аянской (Picea ajanensis) в Центральной Камчатской депрессии. Вестн. СВНЦ ДВО РАН. 2014;3:95-105.

4. Ветрова В.П., Синельникова Н.В. Фенотипическая изменчивость и дифференциация популяций Pinus pumila (Pinaceae) на северо-востоке ареала. Ботан. журнал. 2014;99(7):771-785.

5. Животовский Л.А. Популяционная биометрия. М.: Наука, 1991.

6. Мамаев С.А. Формы внутривидовой изменчивости древесных растений (на примере сем. Pinaceae на Урале). М., 1972.

7. Павлинов И.Я., Микешина Н.Г. Принципы и методы геометрической морфометрии. Журн. общ. биологии. 2002;63(6):473-493.

8. Попов П.П. Ель европейская и сибирская. Новосибирск, 2005.

9. Путенихин В.П., Шигапов З.Х., Фарукшина Г.Г. Ель сибирская наЮжном Урале и в Башкирском Предуралье. М., 2005.

10. Санников С.Н., Петрова И.В. Дифференциация популяций сосны обыкновенной. Екатеринбург, 2003.

11. Санников С.Н., Петрова И.В. Феногеногеография популяций древесных растений: проблемы, методы и некоторые итоги. Хвойные бореальной зоны. 2007;24(2/3):288-296.

12. Фролов В.Д. Внутривидовой полиморфизм и структура популяций ели аянской на территории Сихотэ-Алиня: Автореф. дис. ... канд. биол. наук. Владивосток, 1993.

13. Guries R.P., Ledig F.T. Genetic diversity and population structure inpitch pine (Pinus rigida Mill.). Evolution. 1982;36:387-402.

14. Nei M. Genetic distance between populations. Amer. Nat. 1972;106: 283-292.

15. Peakall R., Smouse P.E. GENALEX 6: genetic analysis in Excel. Populationgenetic software for teaching and research. Mol. Ecol. Notes.2006;6:288-295.

16. Potenko V.V. Allozyme variation and phylogenetic relationships in Piceajezoensis (Pinaceae) populations of the Russian Far East. BiochemicalGenetics. 2007;45(3/4):291-304.

17. Rohlf F.J. Programs tpsDig, version 2.16. 2010; available at http://life.bio.sunysb.edu/morph

18. Sheets H.D. Integrated Morphometrics Programs. 2001; available at http://www.canisius.edu/~sheets/morphsoft.html

19. Vetrova V.P. Geometric Morphometric Analysis of Shape Variation in the Cone-Scales of Pinus pumila (Pall.) Regel (Pinaceae) in Kamchatka. Botanica Pacifica. A Journa of Plant Science and Conservation. 2013;2(1):19-26.

20. Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L. Geometric morphometrics for biologists: a primer. N.Y.: Elsevier Acad. Press, 2004.


Review

Views: 770


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)