Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Hybrid breeding boosted molecular genetics in rye

https://doi.org/10.18699/VJ15.076

Abstract

History of rye (Secale cereale L.) breeding began from the first targeted selections made in Germany by the Probsteier Seed Cooperative around 1850, and over 150 years breeding yielded a tremendous amount of results. Rye has also long been used as cytological subject due to its low number of chromosomes and their size. However, genetic findings in rye up to the early 1980s were rather scant. About 120 genes could be assigned to seven linkage groups. Only through the development of new methods such as C-banding, in situ DNA hybridization, enzymology and molecular marker techniques achieved an enormous progress. Particularly, the latter was driven by agronomic success of hybrid breeding in rye. The basic genetic knowledge resulted from intra- and interspecies genetic diversity assay and phylogenetic studies in the genus Secale using nuclear and cytoplasmic molecular markers facilitated successful selection of parents for hybrid breeding and hence contributed to improvement of heterosis effects. Main achievements in rye hybrid breeding and genetic mechanisms exploited for different hybrid breeding strategies are discussed. The utilsation of landraces and wild relatives via advanced backcross procedures, combined by QTL analysis and introgression libraries, contributed to increase of heterotic effects. Those marker-assisted approaches became the basis of recent hybrid breeding of rye. Prediction of hybrid performance can also be improved significantly by marker-assisted selection and genomic selection based on genomewide marker data. The findings in rye genetics (including phylogenetic, mapping and population studies) are reviewed in their relation with the hybrid breeding purposes and demands. Overall, about 450 morphological and biochemical traits are mapped throughout the genome plus about 5,000 DNA markers. They are not only associated with individual chromosome or segments but also efficiently used for comparative mapping (evolutionary studies) introgression monitoring, QTL tagging, and marker-assisted selection.

About the Author

R. Schlegel
Previous address: Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany Current address: Corrensstrasse 1, D-06466 Gatersleben, Germany
Germany


References

1. Кобылянский В.Д. Цитоплазматическая мужская стерильность у диплоидной ржи. Вестн. с.-х. науки. 1969;6:18-22.

2. Кобылянский В.Д., Катерова А.Г. Наследование цитоплазматической и ядерной мужской стерильности у озимой диплоидной ржи. Генетика. 1973;9:5-11.

3. Лукьяненко П.П. Селекция и семеноводство озимой пшеницы. Избр. тр. М.: Колос, СССР, 1973.

4. Adolf K., Neumann H. Probleme bei der Entwicklung und Nutzung eines Funktionssystems für die Hybridzüchtung beim Roggen Tag. Ber. AdL, Berlin (Germany). 1981;191:61-72.

5. Bartos P., Bares I. Leaf and stem rust resistance of hexaploid wheat cultivars Salzmünder Bartweizen and Weique. Euphytica. 1971;20: 435-

6. Berkner F., Meyer K. Morphologische Studien an Roggenähren aus Anatolien Z. Pflanzenzücht. Bolibok-Brągoszewska H., Heller-Uszyńska K., Wenzl P., Uszyński G., Kilian A., Rakoczy-Trojanowska M. DArT markers for the rye genome – genetic diversity and mapping. BMC Genomics. 2009;10: 578-586.

7. Börner A., Korzun V., Voylokov A.V., Worland A.J., Weber W.E. Genetic mapping of quantitative trait loci in rye (Secale cereale L.). Euphytica. 2000;116:203-209.

8. Brewbaker H.E. Studies of self-fertilization in rye. Univ. Minn. Agric. Exp. State Tech. Bull. 1926;40:1-24.

9. Chikmawati T., Skovmand B., Gustafson J.P. Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphisms. Genome. 2005;48:792-801.

10. Devos K.M., Gale M.D. Comparative genetics in the grasses. Plant Mol. Biol. 1997;35:3-15.

11. Dohmen G., Tudzynski P. A DNA-polymerase-related reading frame (pol-r) in the mtDNA of Secale cerealе Curr. Genet. 1994;25:59-65.

12. Dreyer F., Miedaner T., Geiger H.H. Chromosomale Lokalisation von Restorergenen aus argentinischen und iranische Roggen (Secale cereale L.) Vortr. Pflanzenzücht. 1996;32:49-51.

13. Dundas I.S., Frappell D.E., Crack D.M., Fisher J.M. Deletion mapping of a nematode resistance gene on rye chromosome 6R in wheat. Crop Sci. 2001;41:1771-1778.

14. Falke K.C., Susic Z., Hackauf B., Korzun V., Schondelmaier J., Wilde P., Wehling P. Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics. Theor. Appl. Genet. 2008;117: 641-652.

15. Falke K.C., Susic Z., Wilde P., Wortmann H., Möhring J., Piepho H.-P., Geiger H.H., Miedaner T. Testcross performance of rye introgression lines developed by marker-assisted backcrossing using an Iranian accession as donor. Theor. Appl. Genet. 2009;118:1225-1238.

16. Frederiksen S., Peterson G. A taxonomic revision of Secale (Triticeae, Poaceae). Nordic J. Bot. 1998;18:399-Frimmel F., Baranek F. Beitrag zur Methodik der Roggenzüchtung und des Saatgutbaues Z. Zücht.

17. Geiger H.H., Miedaner T. Genetic basis and phenotypic stability of male fertility restoration in rye. Vortr. Pflanzenzücht. 1996;35:27-38.

18. Geiger H.H., Miedaner T. Hybrid rye and heterosis. Genetics and Exploitation of Heterosis in Crops. Eds J.G. Coors, S. Pandey. Crop Science Society, America, Madison, WI, 1999.

19. Geiger H.H., Miedaner T. Rye breeding. Handbook of Plant Breeding, Cereals. Ed. M.J. Carena. Springer Publishing, N.Y., 2009;3: 157-181.

20. Geiger H.H., Schnell F.W. Cytoplasmic male sterility in rye (Secale cereale L.). Crop Sci. 1970;10:590-593.

21. Geldermann H. Investigations on inheritance of quantitative characters in animals by gene markers. I. Methods. Theor. Appl. Genet. 1975;46:319-330.

22. Glass C., Miedaner T., Geiger H.H. Lokalisation von Restorergenen der Winterroggenlinie L18 mit RFLP-Markern Vortr. Pflanzenzü 1995;31:52-55.

23. Gustafson J.P., Butler E., McIntyre C.L. Physical mapping of a lowcopy DNA sequence in rye (Secale cereale L.). Prod. Nat. Acad. Sci. USA. 1990;87:1899-18902.

24. Gustafson J.P., Ma X.-F., Korzun V., Snape J.W. A consensus map of rye integrating mapping data from five mapping populations. Theor. Appl. Genet. 2009;118:793-800.

25. Hackauf B., Rudd S., Voort van der J.R., Miedaner T., Wehling P. Comparative mapping of DNA sequences in rye (Secale cereale L.) in relation to the rice genome. Theor. Appl. Genet. 2009;118:371-384.

26. Haseneyer G., Schmutzer T., Seidel M., Zhou R., Mascher M., Schön C.C., Taudien S. From RNA-seq to large-scale genotyping – Genomics resources for rye (Secale cereale L.). BMC Plant Biol. 2011;11:131. DOI:10.1186/1471-2229-11-131

27. Heribert-Nilsson N. Morphologische Studien an Roggenähren aus Anatolien Z. Pflanzenzücht. Heslot N., Akdemir D., Sorrells M.E., Jannink J.-L. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor. Appl. Genet. 2014;127:463-480.

28. Hull G.A., Sabelli P.A., Shewry P.R. Restriction fragment analysis of the secalin loci of rye. Biochem. Genet. 1992;30:85-97.

29. Jain S. K. Cytogenetics of rye (Secale ssp.). Bibliogr. Genet. 1960;19 1-86.

30. Kattermann G. Zur Cytologie halmbehaarter Stämme aus Weizenroggenbastardierung Züchter 1937;9:196-199.

31. Krasnyuk A.A. Secale cereale×Agropyron cristatum hybrids. Soc. Grain Farm. 1936;1:106-115.

32. Łapiński M. Cytoplasmic-genic type of male sterility in Secale montanum Guss. Wheat Inform. Serv. 1972;35:25-28.

33. Mahone G.S., Frisch M., Miedaner T., Wilde P., Wortmann H., Falke K.C. Identification of quantitative trait loci in rye introgression lines carrying multiple donor chromosome segments. Theor. Appl. Genet. 2013;126:49-58.

34. Martis M.M., Zhou R., Haseneyer G., Schmutzer T., Vrána J., Kubaláková M., König S., Kugler K.G., Scholz U., Hackauf B., Korzun V., Schön C.-C., Doležel J., Bauer B., Klaus F.X., Mayer K.F.X., Stein N. Reticulate evolution of the rye genome. Plant Cell. 2013;25: 3685-3698.

35. Melz G., Melz G., Hartmann F. Genetics of a male-sterile rye of «Gtype» with results of the first F1-hybrids. Proc. 7th EUCARPIA Conf. July 4–7. Radzikow, Poland, 2001.

36. Melz G., Melz G., Hartmann F. Genetics of a male-sterile rye of «Gtype» with results of the first F1-hybrids. Plant Breed. Seed Sci. 2003;47:47-55.

37. Miedaner T., Glass C., Dreyer F., Wilde P, Wortmann H., Geiger H.H. Mapping of genes for male-fertility restoration in «Pampa A» CMS winter rye (Secale cereale L.). Theor. Appl. Genet. 2000;101: 1226-1233.

38. Miedaner T., Schwegler D.D., Wilde P., Reif J. C. Association between line per se and testcross performance for eight agronomic and quality traits in winter rye. Theor. Appl. Genet. 2014;127:33-41.

39. Milczarski P., Bolibok-Brągoszewska H., Myśków B., Stojałowski S., Heller-Uszyńska K., Góralska M., Brągoszewski P., Uszyński G., Kilian A., Rakoczy-Trojanowska M. A high density consensus map of rye (Secale cereale L.) based on DArT markers. PLoS ONE. 2011;6:e28495.

40. Mohan A., Goyal A., Singh R., Balyan H.S., Gupta P.K. Physical mapping of wheat and rye expressed sequence tag–simple sequence repeats on wheat chromosomes. Crop Sci. 2007;47:3-13.

41. Myśków B., Stojałowski S., Łań A.,Bolibok-Brągoszewska H.,Rakoczy-Trojanowska M., Kilian A. Detection of the quantitative trait loci for α-amylase activity on a high-density genetic map of rye and comparison of their localization to loci controlling preharvest sprouting and earliness. Mol. Breed. 2012;30:367-

42. Nilsson-Ehle H. Einige Beobachtungen über erbliche Variationen der Chlorophylleigenschaft bei den Getreidearten Z. Ind. Abst. Vererbungsl. 1913;9:289-300.

43. Nilsson-Ehle H. Inzucht als Züchtungsmethode Züchtungskunde 1928;3:257-271.

44. O’Mara J.G. The substitution of a specific Secale cereale chromosome for a specific Triticum aestivum chromosome. Genetics. 1947;32: 99-100.

45. Pammer G. Über Veredelungszüchtungen mit einigen Landsorten des Roggens in Niederösterreich Z. Landw. Versuchswesen. 1905;8: 1015-1053.

46. Peterson R.F. Improvement of rye through in-breeding. Sci. Agric. 1934;14:651-668.

47. Quarrie S.A., Steed A., Semikhodsky A., Calestani C., Fish L., Galiba G., Sutka J., Snape J.W. Identifying quantitative trait loci (QTL) for stress response in cereals. Annu. Rep. of John Innes Centre & Sainsbury Laboratory, Norwich, 1994.

48. Rajaram S., Maan C.E., Ortiz-Ferrara A., Mujeeb-Kazi A. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. Proc. 6th Int. Wheat Genet. Symp. Kyoto, Japan, 1983.

49. Ramage R.T. Balanced tertiary trisomics for use in hybrid seed production. Crop Sci. 1965;5:177-178.

50. Riley R., Chapman V., Miller T.E. Hairy necked Viking. Ann. Rep. Plant Breed. Inst. Cambridge, U.K. 1970.

51. Rimpau W. Züchtung auf dem Gebiete der landwirtschaftlichen Kulturpflanzen Mentzel & von Lengerke’s Landwirtschaftl. Kalender, 1883;II:33-92.

52. Rogowsky P.M., Shepherd K.W., Langridge P. Polymerase chain reaction based mapping of rye involving repeated DNA sequences. Genome. 1992;35:621-626.

53. Roemer T., Rudorf W. Handbuch der Pflanzenzüchtung. Bd. 2 Grundlagen der Pflanzenzüchtung. P. Parey Verlag, Berlin/Hamburg, Germany, 1950.

54. Rümker von K., Leidner R. Ein Beitrag zur Frage der Inzucht bei Roggen. Z. Pflanzenzücht. 1914;2:427-444.

55. Santos E., Matos M., Silva P., Figueiras A.M., Benito C., PintoCarnide O. Phylogenetic relationships of genus Secale revealed by RAPD and ISSR markers. Genet. Res. Crop Evol. 2015. in press.

56. Schlegel R. Dictionary of Plant Breeding, 2nd ed. Taylor & Francis, Inc., N.Y., 2009.

57. Schlegel R. Current list of wheats with rye and alien introgression. 2015;03-15:1-18. http://www.rye-gene-map.de/rye-introgression

58. Schlegel R., Korzun V. About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breed. 1997;116:537-540.

59. Schlegel R., Korzun V. Genes, markers and linkage data of rye (Secale cereale L.). 10th uptaded inventory. 2015;03.15:1-115. http://www.rye-gene-map.de

60. Schlegel R., Meinel A. A quantitative trait locus (QTL) on chromosome arm 1RS of rye and its effect on yield performance of hexaploid wheat. Cereal Res. Commun. 1994;22:7-13.

61. Schlegel R., Weryszko E. Intergeneric chromosome pairing in different wheat-rye hybrids revealed by the Giemsa banding technique and some implications on karyotype evolution in the genus Secale. Biol.Zbl. 1979;98:399-407.

62. Schlegel R., Kynast R., Schwarzacher T., Römheld V., Walter A. Mapping of genes for copper efficiency in rye and the relationship between copper and iron efficiency. Plant Soil. 1993;154:61-65.

63. Schnell F.W. Roggen. Dreißig Jahre Züchtungsforschung Ed. W. Rudorf G. Fischer Verl., Stuttgart (Germany), 1959.

64. Shang H.-Y., Wei Y.-M., Wang X-R., Zheng Y.-L. Genetic diversity and phylogenetic relationships in the rye genus Secale L. (rye) based on Secale cereale microsatellite markers. Genet. Mol. Biol. São Paulo. 2006;29:685-691.

65. Sirks M.J. Über einen Fall vererbbarer Lichtempfindlichkeit des Chlorophylls beim Roggen (Secale cereale) Genetica 1929;11:375-386.

66. Steglich R., Pieper H. Vererbungs- und Züchtungsversuche mit Roggen Fühlings Landw. Ztg. 1922;71:201-221.

67. Steinborn R., Schwabe W., Weihe A., Adolf K., Melz G., Börner T. A new type of cytoplasmic male sterility in rye (Secale cereale L.): analysis of mitochondrial DNA. Theor. Appl. Genet. 1993;85: 822-824.

68. Stojałowski S., Łapiński M., Szklarczyk M. Identification of sterilityinducing cytoplasms in rye using the plasmotype –genotype interaction test and newly developed SCAR markers. Theor. Appl. Genet. 2006;112:627-633.

69. Sybenga J. Critical appraisal of balanced chromosomal ms systems in hybrid rye breeding. EUCARPIA Meet. Cereal Sect., Rye, Svalöv (Sweden). 1985.

70. Tahmasebi S., Heidari B., Pakniyat H., Dadkhodaie A. Consequences of 1BL/1RS translocation on agronomic and physiological traits in wheat. Cereal Res. Commun. 2015. DOI: 10.1556/0806.43.2015.016

71. Tenhola-Roininen T., Kalendar R., Schulman A.H., Tanhuanpää P. A doubled haploid rye linkage map with a QTL affecting α-amylase activity. J. Appl. 2011;52:299-304.

72. Treboux O. Beobachtungen über Vererbung yon Kornfarbe und Anthocyan beim Roggen Z. Pflanzenzücht.

73. Tschermak E. Die Züchtung neuer Getreiderassen mittels künstlicher Kreuzung. II. Kreuzungsstudien an Roggen. Z. landw. Versuchsw. 1906;9:699-743.

74. de Vries J.N., Sybenga J. Chromosomal lo­cation of 17 monogenically inherited morphological markers in rye (Secale cereale L.) using the transloca­tion tester set. Z. Pflanzenzücht. 1984;92:117-139.

75. Vries de J.N., Sybenga J. Meiotic behaviour of telo-tertiary compensating trisomics of rye: Evaluation for use in hybrid varieties. Theor. Appl. Genet. 1989;78:889-896.

76. Wang Y., Mette M.F., Miedaner T., Gottwald M., Wilde P., Reif J.C., Zhao Y. The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations

77. and test years. BMC Genomics. 2014;15:556. nih.gov/pmc/articles/PMC4101178/

78. Warzecha R., Salak-Warzecha K. A new source of male sterility in rye (Secale cereale L.). Plant Breed. Seed Sci. 2003;48:

79. Whittaker I.C., Thompson R., Denham M.C. Marker-assisted selection using ridge regression. Genet. Res. 2000;75:249-252.

80. Zeller F.J. 1B/1R wheat-rye substitutions and translocations. Proc. 4th Int. Wheat Genet. Symp. Columbia, USA, 1973.

81. Zeller F.J., Günzel G., Fischbeck G., Gertenkorn P., Weipert D. Ver-fänderungen der Backeigenschaften der Weizen-Roggen-Translokationssorten Getreide Mehl Brot 1982; 36: 141-143.

82. Zohary D. Origin of southwest Asiatic cereals: Wheats, barley, oats and rye. Plant Life of South-West Asia. Eds P.H. Davis et al. Aberdeen University Press, Aberdeen, 1971.


Review

Views: 1054


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)