Трехмерные модели культур клеток: способы получения и характеристика основных моделей
https://doi.org/10.18699/vjgb-25-21
Аннотация
В течение многих лет золотым стандартом в исследованиях злокачественных новообразований являлись культуры опухолевых клеток in vitro, ксенотрансплантаты in vivo или генетически модифицированные модели животных. К настоящему времени арсенал инструментов современных медико-биологических исследований пополнился трехмерными клеточными моделями (3D-культуры). 3D-культуры воспроизводят тканеспецифичные характеристики топологии ткани, что делает их релевантными тканевыми моделями с точки зрения клеточной дифференцировки, метаболизма и развития лекарственной устойчивости. Благодаря своему потенциалу такие модели уже применяются многими исследовательскими группами как для фундаментальных, так и для трансляционных исследований, и их использование позволяет значительно сократить количество экспериментов на животных, например, в области онкологии. В литературе 3D-культуры классифицируют по технике формирования (с каркасом/без каркаса), условиям культивирования (статические/динамические), а также по клеточной организации и функциям. По клеточной организации 3D-культуры разделяют на «сфероидные модели», «органоиды», «органы-на-чипе» и «микроткани». При этом каждая из моделей имеет свои характерные особенности, которые необходимо учитывать при использовании модели в эксперименте. Наиболее простые 3D-культуры – это «сфероидные модели», представляющие собой плавающие сферические агрегаты клеток. Более сложной 3D-моделью является «органоид» – самоорганизующаяся трехмерная структура, сформированная из стволовых клеток, способных к самообновлению и дифференцировке в составе модели. Микрофлюидные системы «орган-на-чипе» – это чипы, имитирующие in vitro основные физические и биологические процессы в органах и тканях в динамике. «Сфероиды» и «органоиды» за счет объединения различных типов клеток в единую структуру могут быть основой для формирования «микроткани» – гибридной 3D-модели, воспроизводящей специфический тканевый фенотип и содержащей тканеспецифичные компоненты внеклеточного матрикса. В данном обзоре представлена краткая история развития метода культивирования клеток in vitro в 3D-формате, описаны основные характеристики и перспективы применения «сфероидных моделей», «органоидов», «органовна-чипе» и «микротканей» для исследований в области иммуноонкологии солидных опухолей.
Об авторах
М. М. АбдурахмановаРоссия
Новосибирск
А. А. Леонтьева
Россия
Краснодарский край; Новосибирск
Н. С. Васильева
Россия
Краснодарский край; Новосибирск
Е. В. Кулигина
Россия
Новосибирск
А. А. Нуштаева
Россия
Краснодарский край; Новосибирск
Список литературы
1. Abdurakhmanova M.M., Ermakov M.S., Richter V.A., Koval O.A., Nushtaeva A.A. The optimization of methods for the establishment of heterogeneous three-dimensional cellular models of breast cancer. Genes and Cells. 2022;17(4):91-103. doi 10.23868/gc425244 (in Russian)
2. Alver C.G., Drabbe E., Agarwal A., Ishahak M. Roadblocks confronting widespread dissemination and deployment of Organs on Chips. Nat Commun. 2024;15:5118. doi 10.1038/s41467-024-48864-3
3. Arora L., Kalia M., Dasgupta S., Singh N., Verma A.K., Pal D. Development of a multicellular 3D tumor model to study cellular heterogeneity and plasticity in NSCLC tumor microenvironment. Front Oncol. 2022;12:881207. doi 10.3389/fonc.2022.881207
4. Azizgolshani H., Coppeta J.R., Vedula E.M., Marr E.E., Cain B.P., Luu R.J., Lech M.P., Kann S.H., Mulhern T.J., Tandon V., Tan K., Haroutunian N.J., Keegan P., Rogers M., Gard A.L., Baldwin K.B., de Souza J.C., Hoefler B.C., Bale S.S., Kratchman L.B., Zorn A., Patterson A., Kim E.S., Petrie T.A., Wiellette E.L., Williams C., Isenberg B.C., Charest J.L. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab Chip. 2021;21(8):1454-1474. doi 10.1039/d1lc00067e
5. Badea M.A., Balas M., Hermenean A., Ciceu A., Herman H., Ionita D., Dinischiotu A. Influence of matrigel on single- and multiple-spheroid cultures in breast cancer research. SLAS Discov. 2019;24(5): 563-578. doi 10.1177/2472555219834698
6. Bandara V., Niktaras V.M., Willett V.J., Chapman H., Lokman N.A., Macpherson A.M., Napoli S., Gundsambuu B., Foeng J., Sadlon T.J., Coombs J., McColl S.R., Barry S.C., Oehler M.K., Ricciardelli C. Engineered CAR-T cells targeting the non-functional P2X purinoceptor 7 (P2X7) receptor as a novel treatment for ovarian cancer. Clin Transl Immunol. 2024;13(5):e1512. doi 10.1002/cti2.1512
7. Barcellos-Hoff M.H., Aggeler J., Ram T.G., Bissell M.J. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 1989; 105(2):223-235. doi 10.1242/dev.105.2.223
8. Bircsak K.M., DeBiasio R., Miedel M., Alsebahi A., Reddinger R., Saleh A., Shun T., Vernetti L.A., Gough A. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology. 2021;450:152667. doi 10.1016/j.tox.2020.152667
9. Boucherit N., Gorvel L., Olive D. 3D tumor models and their use for the testing of immunotherapies. Front Immunol. 2020;11:603640. doi 10.3389/fimmu.2020.603640
10. Burchett A., Siri S., Li J., Lu X., Datta M. Novel 3-D macrophage spheroid model reveals reciprocal regulation of immunomechanical stress and mechano-immunological response. Cell Mol Bioeng. 2024;17(5):329-344. doi 10.1007/s12195-024-00824-z
11. Burdis R., Chariyev-Prinz F., Browe D.C., Freeman F.E., Nulty J., Mcdonnell E.E., Eichholz K.F., Wang B., Brama P., Kelly D.J. Spatial patterning of phenotypically distinct microtissues to engineer osteochondral grafts for biological joint resurfacing. Biomaterials. 2022;289:121750. doi 10.1016/j.biomaterials.2022.121750
12. Caleffi J.T., Aal M.C.E., Gallindo H.O.M., Caxali G.H., Crulhas B.P., Ribeiro A.O., Souza G.R., Delella F.K. Magnetic 3D cell culture: state of the art and current advances. Life Sci. 2021;1(286):120028. doi 10.1016/j.lfs.2021.120028
13. Chen Q., Cui L., Guan Y., Zhang Y. Diels-alder cross-linked, washingfree hydrogel films with ordered wrinkling patterns for multicellular spheroid generation. Biomacromolecules. 2021;22(8):3474-3485. doi 10.1021/acs.biomac.1c00570
14. Chernyavska M., Masoudnia M., Valerius T., Verdurmen W.P.R. Organon-a-chip models for development of cancer immunotherapies. Cancer Immunol Immunother. 2023;72(12):3971-3983. doi 10.1007/s00262-023-03572-7
15. Coluccio M.L., Perozziello G., Malara N., Parrotta E., Zhang P., Gentile F., Limongi T., Raj P.M., Cuda G., Candeloro P., Di Fabrizio E. Microfluidic platforms for cell cultures and investigations. Microelectron Eng. 2019;208:14-28. doi 10.1016/j.mee.2019.01.004
16. Corgnac S., Damei I., Gros G., Caidi A., Terry S., Chouaib S., Deloger M., Mami-Chouaib F. Cancer stem-like cells evade CD8+CD103+ tumor-resident memory T (TRM) lymphocytes by initiating an epithelial-to-mesenchymal transition program in a human lung tumor model. J Immunother Cancer. 2022;10(4):e004527. doi 10.1136/jitc-2022-004527
17. Daly A.C., Davidson M.D., Burdick J.A. 3D bioprinting of high celldensity heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun. 2021;12(1):753. doi 10.1038/s41467-021-21029-2
18. Danku A.E., Dulf E., Braicu C., Jurj A., Berindan-Neagoe I. Organon-a-chip: a survey of technical results and problems. Front Bioeng Biotechnol. 2022;10:840674. doi 10.3389/fbioe.2022.840674
19. Di Buduo C.A., Laurent P.A., Zaninetti C., Lordier L., Soprano P.M., Ntai A., Barozzi S., La Spada A., Biunno I., Raslova H., Bussel J.B., Kaplan D.L., Balduini C.L., Pecci A., Balduini A. Miniaturized 3D bone marrow tissue model to assess response to Thrombopoietinreceptor agonists in patients. eLife. 2021;10:e58775. doi 10.7554/eLife.58775
20. Doost N.F., Srivastava S.K. A comprehensive review of organ-on-achip technology and its applications. Biosensors. 2024;14(5):225. doi 10.3390/bios14050225
21. Duryee W.R., Doherty J.K. Nuclear and cytoplasmic organoids in the living cell. Ann NY Acad Sci. 1954;58(7):1210-1231. doi 10.1111/j.1749-6632.1954.tb45904.x
22. Edmondson R., Broglie J.J., Adcock A.F., Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207- 218. doi 10.1089/adt.2014.573
23. Eke G., Vaysse L., Yao X., Escudero M., Carri A., Trevisiol E., Vieu C., Dani C., Casteilla L., Malaquin L. Cell aggregate assembly through microengineering for functional tissue emergence. Cells. 2022; 11(9):1394. doi 10.3390/cells11091394
24. Eyckmans J., Chen C.S. 3D culture models of tissues under tension. J Cell Sci. 2017;130(1):63-70. doi 10.1242/jcs.198630
25. Fata J.E., Mori H., Ewald A.J., Zhang H., Yao E., Werb Z., Bissell M.J. The MAPKERK-1,2 pathway integrates distinct and antagonistic signals from TGFα and FGF7 in morphogenesis of mouse mammary epithelium. Dev Biol. 2007;306(1):193-207. doi 10.1016/j.ydbio.2007.03.013
26. Forsythe S.D., Erali R.A., Sasikumar S., Laney P., Shelkey E., D’Agostino R., Jr., Miller L.D., Shen P., Levine E.A., Soker S., Votanopoulos K.I. Organoid platform in preclinical investigation of personalized immunotherapy efficacy in appendiceal cancer: feasibility study. Clin Cancer Res. 2021;27(18):5141-5150. doi 10.1158/1078-0432.CCR-21-0982
27. Gaitán-Salvatella I., López-Villegas E.O., González-Alva P., SusateOlmos F., Álvarez-Pérez M.A. Case report: formation of 3D osteoblast spheroid under magnetic levitation for bone tissue engineering. Front Mol Biosci. 2021;8:672518. doi 10.3389/fmolb.2021.672518
28. George J., Chen Y., Abdelfattah N., Yamamoto K., Gallup T.D., Adamson S.I., Rybinski B., Srivastava A., Kumar P., Lee M.G., Baskin D.S., Jiang W., Choi J.M., Flavahan W., Chuang J.H., Kim B.Y.S., Xu J., Jung S.Y., Yun K. Cancer stem cells, not bulk tumor cells, determine mechanisms of resistance to SMO inhibitors. Cancer Res Commun. 2022;2(6):402-416. doi 10.1158/2767-9764.CRC-22-0124
29. Gilazieva Z., Ponomarev A., Rutland C., Rizvanov A., Solovyeva V. Promising applications of tumor spheroids and organoids for personalized medicine. Cancers (Basel). 2020;12(10):2727. doi 10.3390/cancers12102727
30. Grotz M., van Gijzel L., Bitsch P., Carrara S.C., Kolmar H., Garg S. Mimicking the immunosuppressive impact of fibroblasts in a 3D multicellular spheroid model. Front Drug Discov. 2024;4:1427407. doi 10.3389/fddsv.2024.1427407
31. Gunti S., Hoke A.T.K., Vu K.P., London N.R. Organoid and spheroid tumor models: techniques and applications. Cancers (Basel). 2021; 13(4):874. doi 10.3390/cancers13040874
32. Guryanov M.I. Organized frequency structure of electrocardiogram during long-duration ventricular fibrillation under experimental conditions. Sovremennye Tehnologii v Medicine = Modern Technologies in Medicine. 2016;8(3):37-48. doi 10.17691/stm2016.8.3.04
33. Han S.J., Kwon S., Kim K.S. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int. 2021;21(1): 152. doi 10.1186/s12935-021-01853-8
34. Heinrich M.A., Huynh N.T., Heinrich L., Prakash J. Understanding glioblastoma stromal barriers against NK cell attack using tri-culture 3D spheroid model. Heliyon. 2024;10(3):e24808. doi 10.1016/j.heliyon.2024.e24808
35. Higgins C.A., Richardson G.D., Ferdinando D., Westgate G.E., Jahoda C.A.B. Modelling the hair follicle dermal papilla using spheroid cell cultures. Exp Dermatol. 2010;19(6):546-548. doi 10.1111/j.1600-0625.2009.01007.x
36. Hofer M., Lutolf M.P. Engineering organoids. Nat Rev Mater. 2021; 6(5):402-420. doi 10.1038/s41578-021-00279-y
37. Hong G., Kim J., Oh H., Yun S., Kim C.M., Jeong Y., Yun W., Shim J., Jang I., Kim C., Jin S. Production of multiple cell-laden microtissue spheroids with a biomimetic hepatic-lobule-like structure. Adv Mater. 2021;33(36):e2102624. doi 10.1002/adma.202102624
38. Hsu T.W., Lu Y.J., Lin Y.J., Huang Y.T., Hsieh L.H., Wu B.H., Lin Y.C., Chen L.C., Wang H.W., Chuang J.C., Fang Y.Q., Huang C.C. Transplantation of 3D MSC/HUVEC spheroids with neuroprotective and proangiogenic potentials ameliorates ischemic stroke brain injury. Biomaterials. 2021;272:120765. doi 10.1016/j.biomaterials.2021.120765
39. Ivascu A., Kubbies M. Diversity of cell-mediated adhesions in breast cancer spheroids. Int J Oncol. 2007;31(6):1403-1413. doi 10.3892/ijo.31.6.1403
40. Jedrzejczak-Silicka M. History of cell culture. In: New Insights into Cell Culture Technology. InTech, 2017. doi 10.5772/66905
41. Jeibouei S., Khazraie A., Hojat A., Reza A. Human-derived TumorOn-Chip model to study the heterogeneity of breast cancer tissue. Biomater Adv. 2024;162:213915. doi 10.1016/j.bioadv.2024.213915
42. Jeong H.S., Park C.Y., Kim J.H., Joo H.J., Choi S.C., Choi J.H., Lim I.R., Park J.H., Hong S.J., Lim D.S. Cardioprotective effects of genetically engineered cardiac stem cells by spheroid formation on ischemic cardiomyocytes. Mol Med. 2020;26(1):15. doi 10.1186/s10020-019-0128-8
43. Kang S.M., Kim D., Lee J.H., Takayama S., Park J.Y. Engineered microsystems for spheroid and organoid studies. Adv Healthc Mater. 2021;10(2):e2001284. doi 10.1002/adhm.202001284
44. Karimifard S.A., Salehzadeh-Yazdi A., Taghizadeh-Tabarsi R., AkbariBirgani S. Mechanical effects modulate drug resistance in MCF7-derived organoids: insights into the wnt/β-catenin pathway. Biochem Biophys Res Commun. 2024;695:149420. doi 10.1016/j.bbrc.2023.149420
45. Kassis T., Hernandez-Gordillo V., Langer R., Griffith L.G. OrgaQuant: human intestinal organoid localization and quantification using deep convolutional neural networks. Sci Rep. 2019;9(1):12479. doi 10.1038/s41598-019-48874-y
46. Khan I., Prabhakar A., Delepine C., Tsang H., Pham V., Sur M. A lowcost 3D printed microfluidic bioreactor and imaging chamber for live-organoid imaging. Biomicrofluidics. 2021;15(2):024105. doi 10.1063/5.0041027
47. Kim T.Y., Kofron C.M., King M.E., Markes A.R., Okundaye A.O., Qu Z., Mende U., Choi B.R. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts. PLoS One. 2018;13(5):e0196714. doi 10.1371/journal.pone.0196714
48. Kumar S., Wei G., Aggarwal N. Organ-on-chip technology: opportunities and challenges. Biotechnol Notes. 2024;5:8-12. doi 10.1016/j.biotno.2024.01.001
49. Lee G.Y., Kenny P.A., Lee E.H., Bissell M.J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4(4):359-365. doi 10.1038/nmeth1015
50. Li M.L., Aggeler J., Farson D.A., Hatier C., Hassell J., Bissell M.J. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci USA. 1987;84(1):136-140. doi 10.1073/pnas.84.1.136
51. Lohasz C., Loretan J., Sterker D., Görlach E., Renggli K., Argast P., Frey O., Wiesmann M., Wartmann M., Rausch M., Hierlemann A. Amicrophysiological cell-culturing system for pharmacokinetic drug exposure and high-resolution imaging of arrays of 3D microtissues. Front Pharmacol. 2021;12:785851. doi 10.3389/fphar.2021.785851
52. Magenau J., Runaas L., Reddy P. Advances in understanding the pathogenesis of graft-versus-host disease. Br J Haematol. 2016;173(2): 190-205. doi 10.1111/bjh.13959
53. Maliszewska-Olejniczak K., Brodaczewska K.K., Bielecka Z.F., Solarek W., Kornakiewicz A., Szczylik C., Porta C., Czarnecka A.M. Development of extracellular matrix supported 3D culture of renal cancer cells and renal cancer stem cells. Cytotechnology. 2019; 71(1):149-163. doi 10.1007/s10616-018-0273-x
54. Martins C., Pacheco C., Moreira-Barbosa C., Marques-Magalhães Â., Dias S., Araújo M., Oliveira M.J., Sarmento B. Glioblastoma immuno-endothelial multicellular microtissue as a 3D in vitro evaluation tool of anti-cancer nano-therapeutics. J Control Release. 2023; 353:77-95. doi 10.1016/j.jconrel.2022.11.024
55. Maulana T.I., Teufel C., Cipriano M., Roosz J., Lazarevski L., van den Hil F.E., Scheller L., Orlova V., Koch A., Hudecek M., Alb M., Loskill P. Breast cancer-on-chip for patient-specific efficacy and safety testing of CAR-T cells. Cell Stem Cell. 2024;31(7):989- 1002.e9. doi 10.1016/j.stem.2024.04.018. Epub 2024 May15. PMID 38754430
56. Mesci P., de Souza J.S., Martin-Sancho L., Macia A., Saleh A., Yin X., Snethlage C., Adams J.W., Avansini S.H., Herai R.H., AlmenarQueralt A., Pu Y., Szeto R.A., Goldberg G., Bruck P.T., Papes F., Chanda S.K., Muotri A.R. SARS-CoV-2 infects human brain organoids causing cell death and loss of synapses that can be rescued by treatment with Sofosbuvir. PLoS Biol. 2022;20(11):e3001845. doi 10.1371/journal.pbio.3001845
57. Miao X., Wang C., Chai C., Tang H., Hu J., Zhao Z., Luo W., Zhang H., Zhu K., Zhou W., Xu H. Establishment of gastric cancer organoid and its application in individualized therapy. Oncol Lett. 2022; 24(6):447. doi 10.3892/ol.2022.13567
58. Moradi-Mehr S., Khademy M., Akbari-Birgani S., Kafian H., Lalenejad M., Abdollahpour D., Moghimi M. Comparative evaluation of the therapeutic strategies using a minimal model of luminal-A breast cancer. Biochem Biophys Res Commun. 2023;666:107-114. doi 10.1016/j.bbrc.2023.05.028
59. Moscona A. Development of heterotypic combinations of dissociated embryonic chick cells. Proc Soc Exp Biol Med. 1956;92(2):410-416. doi 10.3181/00379727-92-22495
60. Nair A.L., Mesch L., Schulz I., Becker H., Raible J., Kiessling H., Werner S., Rothbauer U., Schmees C., Busche M., Trennheuser S., Fricker G., Stelzle M. Parallelizable microfluidic platform to model and assess in vitro cellular barriers: technology and application to study the interaction of 3D tumor spheroids with cellular barriers. Biosensors. 2021;11(9):314. doi 10.3390/bios11090314
61. Neal J.T., Li X., Zhu J., Giangarra V., Grzeskowiak C.L., Ju J., Liu I.H., Chiou S.H., Salahudeen A.A., Smith A.R., Deutsch B.C., Liao L., Zemek A.J., Zhao F., Karlsson K., Schultz L.M., Metzner T.J., Nadauld L.D., Tseng Y.Y., Alkhairy S., Oh C., Keskula P., MendozaVillanueva D., De La Vega F.M., Kunz P.L., Liao J.C., Leppert J.T., Sunwoo J.B., Sabatti C., Boehm J.S., Hahn W.C., Zheng G.X.Y., Davis M.M., Kuo C.J. Organoid modeling of the tumor immune resource organoid modeling of the tumor immune microenvironment. Cell. 2018;175(7):1972-1988.e16. doi 10.1016/j.cell.2018.11.021
62. Nguyen M., De Ninno A., Mencattini A., Mermet-Meillon F., Fornabaio G., Evans S.S., Cossutta M., Khira Y., Han W., Sirven P., Pelon F., Di Giuseppe D., Bertani F.R., Gerardino A., Yamada A., Descroix S., Soumelis V., Mechta-Grigoriou F., Zalcman G., Camonis J., Martinelli E., Businaro L., Parrini M.C. Dissecting effects of anti-cancer drugs and cancer-associated fibroblasts by on-chip reconstitution of immunocompetent tumor microenvironments. Cell Rep. 2018;25(13):3884-3893. doi 10.1016/j.celrep.2018.12.015
63. Nguyen O.P., Misun P.M., Lohasz C., Lee J., Wang W., Schroeder T., Hierlemann A. An immunocompetent microphysiological system to simultaneously investigate effects of anti-tumor natural killer cells on tumor and cardiac microtissues. Front Immunol. 2021;12:781337. doi 10.3389/fimmu.2021.781337
64. Nikonorova V.G., Chrishtop V.V., Mironov V.A., Prilepskii A.Y. Advantages and potential benefits of using organoids in nanotoxicology. Cells. 2023;12(4):610. doi 10.3390/cells12040610
65. Ninomiya K., Taniuchi T. Assembly of a tumor microtissue by stacking normal and cancer spheroids on Kenzan using a bio-3D printer to monitor dynamic cancer cell invasion in the microtissue. Biochem Eng J. 2024;212:109536. doi 10.1016/j.bej.2024.109536
66. Noorintan S.T., Angelius C., Torizal F.G. Organoid models in cancer immunotherapy: bioengineering approach for personalized treatment. Immuno. 2024;4(4):312-324. doi 10.3390/immuno4040020
67. Nushtaeva A.A., Savinkova M.M., Ermakov M.S., Varlamov M.E., Novak D.D., Richter V.A., Koval O.A. Breast cancer cells in 3D model alters their sensitivity to hormonal and growth factors. Cell Tissue Biol. 2022;16(6):555-567. doi 10.1134/S1990519X22060050
68. Pașca S.P., Arlotta P., Bateup H.S., Camp J.G., Cappello S., Gage F.H., Knoblich J.A., Kriegstein A.R., Lancaster M.A., Ming G.L., Muotri A.R., Park I.H., Reiner O., Song H., Studer L., Temple S., Testa G., Treutlein B., Vaccarino F.M. A nomenclature consensus for nervous system organoids and assembloids. Nature. 2022; 609(7929):907-910. doi 10.1038/s41586-022-05219-6
69. Petersen O.W., Rønnov-Jessen L., Howlett A.R., Bissell M.J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA. 1992;89(19):9064-9068. doi 10.1073/pnas.89.19.9064
70. Ponti D., Costa A., Zaffaroni N., Pratesi G., Petrangolini G., Coradini D., Pilotti S., Pierotti M.A., Daidone M.G. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65(13):5506-5511. doi 10.1158/0008-5472.CAN-05-0626
71. Ravi M., Kaviya S.R., Paramesh V. Culture phases, cytotoxicity and protein expressions of agarose hydrogel induced Sp2/0, A549, MCF-7 cell line 3D cultures. Cytotechnology. 2016;68(3):429-441. doi 10.1007/s10616-014-9795-z
72. Rheinwatd J.G., Green H. Seria cultivation of strains of human epidemal keratinocytes: the formation keratinizin colonies from single cell is. Cell. 1975;6(3):331-343. doi 10.1016/S0092-8674(75)80001-8
73. Rodrigues D.B., Reis R.L., Pirraco R.P. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci. 2024;31(1):13. doi 10.1186/s12929-024-00997-9
74. Sadovska L., Zandberga E., Sagini K., Jēkabsons K., Riekstiņa U., Kalniņa Z., Llorente A., Linē A. A novel 3D heterotypic spheroid model for studying extracellular vesicle-mediated tumour and immune cell communication. Biochem Biophys Res Commun. 2018; 495(2):1930-1935. doi 10.1016/j.bbrc.2017.12.072
75. Sakalem M.E., De Sibio M.T., da Costa F.A.D.S., de Oliveira M. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnol J. 2021;16(5):e2000463. doi 10.1002/biot.202000463
76. Schnalzger T.E., De Groot M.H.P., Zhang C., Mosa M.H., Michels B.E., Röder J., Darvishi T., Wels W.S. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 2019;38(12):e100928. doi 10.15252/embj.2018100928
77. Schot M., Araújo-Gomes N., Van Loo B., Kamperman T., Leijten J. Scalable fabrication, compartmentalization and applications of living microtissues. Bioact Mater. 2023;19:392-405. doi 10.1016/j.bioactmat.2022.04.005
78. Shamir E.R., Ewald A.J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. 2014;15(10):647-664. doi 10.1038/nrm3873
79. Simian M., Bissell M.J. Organoids: a historical perspective of thinking in three dimensions. J Cell Biol. 2017;216(1):31-40. doi 10.1083/jcb.201610056
80. Singh D., Mathur A., Arora S., Roy S., Mahindroo N. Applied surface science advances journey of organ on a chip technology and its role in future healthcare scenario. Appl Surf Sci Adv. 2022;9:100246. doi 10.1016/j.apsadv.2022.100246
81. Sulaiman S., Chowdhury S.R., Fauzi M.B., Rani R.A., Mohamadyahaya N.H., Tabata Y., Hiraoka Y., Idrus R.B.H., Hwei N.M. 3D culture of MSCS on a gelatin microsphere in a dynamic culture system enhances chondrogenesis. Int J Mol Sci. 2020;21(8):2688. doi 10.3390/ijms21082688
82. Sun M., Liu A., Yang X., Gong J., Yu M., Yao X., Wang H., He Y. 3D cell culture – can it be as popular as 2D cell culture? Adv NanoBiomed Res. 2021;1(5):2000066. doi 10.1002/anbr.202000066
83. Sutherland R.M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988;240(4849): 177-184. doi 10.1126/science.2451290
84. Tanaka Y., Nishikawa M., Mizukami Y., Kusamori K., Ogino Y., Nishimura S., Shimizu K., Konishi S., Takahashi Y., Takakura Y. Control of polarization and tumoricidal activity of macrophages by multicellular spheroid formation. J Control Release. 2018;270:177- 183. doi 10.1016/j.jconrel.2017.12.006
85. Troitskaya O., Novak D., Nushtaeva A., Savinkova M., Varlamov M., Ermakov M., Richter V., Koval O. EGFR transgene stimulates spontaneous formation of MCF7 breast cancer cells spheroids with partly loss of HER3 receptor. Int J Mol Sci. 2021;22(23):12937. doi 10.3390/ijms222312937
86. Valent P., Bonnet D., De Maria R., Lapidot T., Copland M., Melo J.V., Chomienne C., Ishikawa F., Schuringa J.J., Stassi G., Huntly B., Herrmann H., Soulier J., Roesch A., Schuurhuis G.J., Wöhrer S., Arock M., Zuber J., Cerny-Reiterer S., Johnsen H.E., Andreeff M., Eaves C. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12(11):767-775. doi 10.1038/nrc3368
87. Vasileva N.S., Kuligina E.V., Dymova M.A., Savinovskaya Y.I., Zinchenko N.D., Ageenko A.B., Mishinov S.V., Dome A.S., Stepanov G.A., Richter V.A., Semenov D.V. Transcriptome changes in glioma cells cultivated under conditions of neurosphere formation. Cells. 2022;11(19):3106. doi 10.3390/cells11193106
88. Veith I., Nurmik M., Mencattini A., Damei I., Lansche C., Brosseau S., Gropplero G., Corgnac S., Filippi J., Poté N., Guenzi E., Chassac A., Mordant P., Tosello J., Sedlik C., Piaggio E., Girard N., Camonis J., Shirvani H., Mami-Chouaib F., Mechta-Grigoriou F., Descroix S., Martinelli E., Zalcman G., Parrini M.C. Assessing personalized responses to anti-PD-1 treatment using patient-derived lung tumor-onchip. Cell Rep Med. 2024;5(5):101549. doi 10.1016/j.xcrm.2024.101549
89. Verjans E.T., Doijen J., Luyten W., Landuyt B., Schoofs L. Three-dimensional cell culture models for anticancer drug screening: worth the effort? J Cell Physiol. 2018;233(4):2993-3003. doi 10.1002/jcp.26052
90. Waldhauer I., Morra L., Lehmann S., Agarkova I., Zumstein P., Kelm J.M., Umana P., Klein C., Bacac M. Abstract LB-264: development of 3D microtissue models to study the activity of novel tumor-targeted immunotherapeutics. Cancer Res. 2013;73(8_Supplement):LB-264. doi 10.1158/1538-7445.AM2013-LB-264
91. Wang O., Han L., Lin H., Tian M., Zhang S., Duan B., Chung S., Zhang C., Lian X., Wang Y., Lei Y. Fabricating 3-dimensional human brown adipose microtissues for transplantation studies. Bioact Mater. 2023;22:518-534. doi 10.1016/j.bioactmat.2022.10.022
92. Wang Y., Kankala R.K., Zhang J., Hao L., Zhu K., Wang S., Zhang Y.S., Chen A. Modeling endothelialized hepatic tumor microtissues for drug screening. Adv Sci. 2020;7(21):2002002. doi 10.1002/advs.202002002
93. Wei W., Cardes F., Hierlemann A., Modena M.M. 3D in vitro bloodbrain-barrier model for investigating barrier insults. Adv Sci. 2023; 10(11):e2205752. doi 10.1002/advs.202205752 Weiswald L.B., Bellet D., Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015;17(1):1-15. doi 10.1016/j.neo.2014.12.004
94. Wolter J.R. Proliferating pigment epithelium: producing a simple organoid structure in the subrentinal space of a human eye. Arch Ophthalmol. 1967;77(5):651-654. doi 10.1001/archopht.1967.00980020653016
95. Zhang J., Li C., Meng F., Guan Y., Zhang T., Yang B., Ren Z., Liu X., Li D., Zhao J., Zhao J., Wang Y., Peng J. Functional tissue-engineered microtissue formed by self-aggregation of cells for peripheral nerve regeneration. Stem Cell Res Ther. 2022;13(1):3. doi 10.1186/s13287-021-02676-0
96. Zhou Z., Van der Jeught K., Fang Y., Yu T., Li Y., Ao Z., Liu S., Zhang L., Yang Y., Eyvani H., Cox M.L., Wang X., He X., Ji G., Schneider B.P., Guo F., Wan J., Zhang X., Lu X. An organoid-based screen for epigenetic inhibitors that stimulate antigen presentation and potentiate T-cell-mediated cytotoxicity. Nat Biomed Eng. 2021; 5(11):1320-1335. doi 10.1038/s41551-021-00805-x