Mitochondrial genome variation of mosquito species in the subgenus Stegomyia of the genus Aedes (Diptera: Culicidae)
https://doi.org/10.18699/vjgb-25-25
Abstract
Mosquitoes in the subgenus Stegomyia of the genus Aedes are vectors of a number of vertebrate viruses, including human arboviral fevers. Of particular interest is the study of the genetic characteristics of invasive populations of species in this group. We obtained, annotated and described the mitochondrial genomes of three Stegomyia mosquito species of the genus Aedes: Ae. albopictus, Ae. flavopictus and Ae. sibiricus. The mitochondrial genomes of Ae. flavopictus and Ae. sibiricus were obtained from mosquitoes from synanthropic populations in the Russian Far East. The mitochondrial genome of Ae. sibiricus is presented for the first time. The mitochondrial genome of Ae. albopictus was obtained for the C6/36 cell line. We selected three primer sets, for each mosquito species, that amplify the entire mitochondrial genome except for the control region and sequenced the genomes using the Sanger method. All three new genomes have an identical gene order. We identified 13 canonical protein-coding genes, 2 ribosomal RNA genes, and 22 transport RNA genes. Protein-coding genes have canonical start and stop codons with two exceptions. The canonical stop codon “TAA” is incomplete in the cox1 and cox2 genes. The cox1 gene lacks the canonical start codon for methionine. Nucleotide variability is mainly represented by point nucleotide substitutions. A phylogenetic analysis of the nucleotide sequences of complete mitochondrial genomes of all known mosquitoes species in the subgenus Stegomyia of the genus Aedes was performed. The data obtained made it possible to measure the ratio of synonymous to non-synonymous substitutions (Ka/Ks) in specific protein-coding genes.
About the Authors
A. G. BegaRussian Federation
Mytishchi, Moscow Region; Moscow
I. I. Goryacheva
Russian Federation
Mytishchi, Moscow Region; Moscow
A. V. Moskaev
Russian Federation
Mytishchi, Moscow Region; Balashikha, Moscow Region
B. V. Andrianov
Russian Federation
Moscow
References
1. Battaglia V., Gabrieli P., Brandini S., Capodiferro M.R., Javier P.A., Chen X.G., Achilli A., Semino O., Gomulski L.M., Malacrida A.R., Gasperi G., Torroni A., Olivieri A. The worldwide spread of the tiger mosquito as revealed by mitogenome haplogroup diversity. Front Genet. 2016;7:208. doi 10.3389/fgene.2016.00208
2. Bega A.G., Vu T., Goryacheva I.I., Moskaev A.V., Andrianov B.V. A barcoding and morphological identification of mosquito species of the genus Aedes (Diptera: Culicidae) of the Russian Far East and Northern Vietnam. Russ J Genet. 2022;58(3):314-325. doi 10.1134/S1022795422030024
3. Berlov O.E., Berlov E.Y., Artemyeva S.Yu. Findings of the tigermosquito Aedes (Stegomyia) sibiricus Danilov et Filippova, 1978 (Insecta: Diptera, Culicidae) in Irkutsk. Baikal Zoological Journal. 2021;2(30):118-119 (in Russian)
4. Berlov O.E., Kuberskaya O.V. First record of tiger mosquito Aedes flavopictus Yamada, 1921 (Diptera, Culicidae) in the Lower Amur area (Khabarovsk region, Russia). Amurian Zoological Journal. 2021;13(4):550-556. doi 10.33910/2686-9519-2021-13-4-550-556 (in Russian)
5. Brown P.M.J., Thomas C.E., Lombaert E., Jeffries D.L., Estoup A., Handley L.J.L. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. BioControl. 2011;56:623-641. doi 10.1007/s10526-011-9379-1
6. Danilov V.N., Filippova V.N. A new species of mosquito Aedes (Stegomyia) sibiricus sp. n. (Culicidae). Parazitologiia = Parasitology. 1978;12(2):170-176 (in Russian)
7. Fedorova M.V., Shvets O.G., Medyanik I.M., Shaikevich E.V. Genetic diversity of invasive Aedes (Stegomyia) albopictus (Skuse, 1895) population (Diptera, Culicidae) in Krasnodar region, Russia. Parazitologiia = Parasitology. 2019;53(6):518-528. doi 10.1134/S0031184719060073 (in Russian)
8. Guo J., Yan Z.T., Fu W.B., Yuan H., Li X.D., Chen B. Complete mitogenomes of Anopheles peditaeniatus and Anopheles nitidus and phylogenetic relationships within the genus Anopheles inferred from mitogenomes. Parasit Vectors. 2021;14(1):452. doi 10.1186/s13071-021-04963-4
9. Gutsevich V.A., Monchadskii A.S., Shtakel’berg A.A. Mosquitoes (Culicidae). In: Fauna of the USSR. Diptera. Vol. 3, Iss. 4. Leningrad: Nauka Publ., 1970 (in Russian)
10. Hebert P.D., Cywinska A., Ball S.L., de Waard J.R. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270(1512): 313-321. doi 10.1098/rspb.2002.2218
11. Khrabrova N.V., Andreeva Y.V., Sibataev A.K., Alekseeva S.S., Esenbekova P.A. Mosquitoes of Anopheles hyrcanus (Diptera, Culicidae) group: species diagnostic and phylogenetic relationships. Am J Trop Med Hyg. 2015;93(3):619-622. doi 10.4269/ajtmh.14-0207
12. Kumar S., Stecher G., Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016; 33(7):1870-1874. doi 10.1093/molbev/msw054
13. Medlock J.M., Hansford K.M., Schaffner F., Versteirt V., Hendrickx G., Zeller H., Bortel W.V. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12(6):435-447. doi 10.1089/vbz.2011.0814
14. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3(5):418-426. doi 10.1093/oxfordjournals.molbev.a040410
15. Piccinno R., Tatti A., Avosani S., Galla G., Lazazzara V., Pedrazzoli F., Zadra N., Rodeghiero M., Seljak G., Özgen İ., Hauffe H.C., Verrastro V., Stacconi M.V.R., Mazzoni V., Rota-Stabelli O. A multidisciplinary approach to tackling invasive species: barcoding, morphology, and metataxonomy of the leafhopper Arboridia adanae. Sci Rep. 2024;14(1):2229. doi 10.1038/s41598-023-49410-9
16. Poltoratskaya N.V., Mirzaeva A.G. New records of the rare species Aedes sibiricus Danilov et Filippova, 1978 (Diptera, Culicidae) from West Siberia, Russia. Evraziatskii Entomologicheskii Zhurnal = Euroasian Entomological Journal. 2013;12(2):144-146. (in Russian)
17. Ree H.I. Taxonomic review and revised keys of the Korean mosquitoes (Diptera: Culicidae). Entomol Res. 2003;33(1):39-52. doi 10.1111/j.1748-5967.2003.tb00047.x
18. Rozen S., Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. In: Misener S., Krawetz S.A. (Eds) Bioinformatics Methods and Protocols. Methods in Molecular Biology. Vol. 132. Humana Press, Totowa, NJ, 2000. doi 10.1385/1-59259-192-2:365
19. Shin J., Jung J. Comparative population genetics of the invasive mosquito Aedes albopictus and the native mosquito Aedes flavopictus in the Korean peninsula. Parasit Vectors. 2021;14(1):377. doi 10.1186/s13071-021-04873-5
20. Singh K.R.P. Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.). Curr Sci. 1967;36(19):506-508
21. Tanaka K.M. A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara Islands) and Korea (Diptera: Culicidae). In: Tanaka K., Mizusawa K., Saugstad E.S. (Eds) Contributions of the American Entomological Institute. APO; San Francisco; California: American Entomological Institute, 1979;987
22. Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-4680. doi 10.1093/nar/22.22.4673
23. Wang D., Liu F., Wang L., Huang S., Yu J. Nonsynonymous substitution rate (Ka) is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes. Biol Direct. 2011;6:13. doi 10.1186/1745-6150-6-13
24. Wang G., Li C., Guo X., Xing D., Dong Y., Wang Z., Zhang Y., Liu M., Zheng Z., Zhang H., Zhu X., Wu Z., Zhao T. Identifying the main mosquito species in China based on DNA barcoding. PLoS One. 2012;7(10):e47051. doi 10.1371/journal.pone.0047051
25. Weetman D., Kamgang B., Badolo A., Moyes C.L., Shearer F.M., Coulibaly M., Pinto J., Lambrechts L., McCall P.J. Aedes mosquitoes and Aedes-borne arboviruses in Africa: current and future threats. Int J Environ Res Public Health. 2018;15(2):220. doi 10.3390/ijerph15020220
26. Wilkerson R.C., Linton Y.M., Strickman D. Mosquitoes of the World. Baltimore: Johns Hopkins University Press, 2021 Xing Z.P., Liang X., Wang X., Hu H.Y., Huang Y.X. Novel gene rearrangement pattern in mitochondrial genome of Ooencyrtusplautus Huang & Noyes, 1994: new gene order in Encyrtidae (Hymenoptera, Chalcidoidea). ZooKeys. 2022;1124:1-21. doi 10.3897/zookeys.1124.83811
27. Yang Z., Bielawski J.R. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000;15(12):496-503. doi 10.1016/s0169-5347(00)01994-7
28. Ze-Ze L., Borges V., Osório H.C., Machado J., Gomes J.P., Alves M.J. Mitogenome diversity of Aedes (Stegomyia) albopictus: detection of multiple introduction events in Portugal. PLoS Negl Trop Dis. 2020; 14(9):e0008657. doi 10.1371/journal.pntd.0008657
29. Zhang B., Havird J.C., Wang E., Lv J., Xu X. Massive gene rearrangement in mitogenomes of phytoseiid mites. Int J Biol Macromol. 2021;186:33-39. doi 10.1016/j.ijbiomac.2021.07.011
30. Zhang H.G., Lv M.H., Yi W.B., Zhu W.B., Bu W.J. Species diversity can be overestimated by a fixed empirical threshold: insights from DNA barcoding of the genus Cletus (Hemiptera: Coreidae) and the meta-analysis of COI data from previous phylogeographical studies. Mol Ecol Resour. 2017;17(2):314-323. doi 10.1111/1755-0998.12571
31. Zhang Z., Li J., Yu J. Computing Ka and Ks with a consideration of unequal transitional substitutions. BMC Evol Biol. 2006;6:44. doi 10.1186/1471-2148-6-44
32. Zheng S., Poczai P., Hyvönen J., Tang J., Amiryousefi A. Chloroplot: an online program for the versatile plotting of organelle genomes. Front Genet. 2020;11:576124. doi 10.3389/fgene.2020.576124