Таксономическое разнообразие микробных сообществ холодного сероводородного источника Безымянный (Прибайкальский район, Республика Бурятия)
https://doi.org/10.18699/vjgb-25-30
Аннотация
Экологические условия холодных серосодержащих источников благоприятствуют росту и развитию богатых микробных сообществ со множеством уникальных бактерий цикла серы. В настоящей работе с использованием высокопроизводительного секвенирования гена 16S рРНК было изучено таксономическое разнообразие микробных сообществ трех различных биотопов (микробный мат, донный осадок и вода) в холодном сероводородном источнике Безымянный, расположенном на побережье озера Байкал (Прибайкальский район, Республика Бурятия). В результате секвенирования проб микробного мата, донного осадка и воды получено 76 972 последовательности, отнесенных к 1714 ASV (amplicon sequence variant – варианты последовательностей ампликонов). Анализ распределения ASV по биотопам выявил высокий показатель (66–93 %) уникальности трех исследуемых сообществ. Оценка индекса альфа-разнообразия показала, что сообщество донного осадка имело более высокие индексы, сообщество микробного мата отличалось наименьшим разнообразием. В исследуемых сообществах в разных пропорциях доминировали бактерии филумов Pseudomonadota, Bacteroidota, Campylobacterota, Actinomycetota, Desulfobacterota. Установлены особенности структуры сообществ исследуемых биотопов. Сообщество микробного мата было представлено преимущественно бактериями рода Thiothrix (43.2 %). В сообществе донного осадка основу составляли бактерии рода Sulfurovum (11.2 %), содоминировали неклассифицируемые таксоны (3.2–1 %). Микробное сообщество воды характеризовалось присутствием последовательностей, обнаруженных только в воде. Данные последовательности были отнесены к родам Novosphingobium, Nocardioides, Legionella, Brevundimonas, Sphingomonas, Bacillus, Mycobacterium, Sphingopyxis, Bradyrhizobium и Thiomicrorhabdus. Во всех изучаемых сообществах были идентифицированы сероокисляющие бактерии (SOB) и серовосстанавливающие бактерии (SRB), что свидетельствует о протекающих процессах цикла серы в экосистеме источника Безымянный. Необходимо отметить, что во всех сообществах присутствовали последовательности неклассифицированных и некультивируемых бактерий цикла серы, и в целом значительную долю последовательностей (20.3–53.9 %) не удалось классифицировать.
Об авторах
Т. Г. БанзаракцаеваРоссия
Улан-Удэ
Е. В. Лаврентьева
Россия
Улан-Удэ
В. Б. Дамбаев
Россия
Улан-Удэ
И. Д. Ульзетуева
Россия
Улан-Удэ
В. В. Хахинов
Россия
Улан-Удэ
Список литературы
1. Bates S.T., Berg-Lyons D., Caporaso J.G., Walters W.A., Knight R., Fierer N. Examining the global distribution of dominant archaeal populations in soil. ISME J. 2011;5(5):908-917. doi 10.1038/ismej. 2010.171
2. Borisenko I.M., Zamana L.V. Mineral Waters of Buryat ASSR. UlanUde: Buryat Publ., 1978 (in Russian)
3. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-583. doi 10.1038/nmeth.3869
4. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., … Walters W.A., Widmann J., Yatsunenko T., Zaneveld J., Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7(5):335-336. doi 10.1038/nmeth.f.303
5. Chao A., Gotelli N.J., Hsieh T.C., Sander E.L., Ma K.H., Colwell R.K., Ellison A.M. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014;84(1):45-67. doi 10.1890/13-0133.1
6. Chao A., Ma K.H., Hsieh T.C. iNEXT (iNterpolation and EXTrapolation) Online: Software for Interpolation and Extrapolation of Species Diversity. 2016. Program and User’s Guide published at http://chao.stat.nthu.edu.tw/wordpress/software_download/
7. Chaudhary A., Haack S.K., Duris J.W., Marsh T.L. Bacterial and archaeal phylogenetic diversity of a cold sulfur-rich spring on the shoreline of Lake Erie, Michigan. Appl Environ Microbiol. 2009; 75(15):5025-5036. doi 10.1128/AEM.00112-09
8. Chernitsyna S.M., Elovskaya I.S., Bukin S.V., Bukin Y.S., Pogodaeva T.V., Kwon D.A., Zemskaya T.I. Genomic and morphological characterization of a new Thiothrix species from a sulfide hot spring of the Zmeinaya bay (Northern Baikal, Russia). Antonie van Leeuwenhoek. 2024;117(1):23. doi 10.1007/s10482-023-01918-w
9. Colangelo-Lillis J., Pelikan C., Herbold C.W., Altshuler I., Loy A., Whyte L.G., Wing B.A. Diversity decoupled from sulfur isotope fractionation in a sulfate-reducing microbial community. Geobiology. 2019;17(6):660-675. doi 10.1111/gbi.12356
10. Conklin K.Y., Stancheva R., Otten T.G., Fadness R., Boyer G.L., Read B., Zhang X., Sheath R.G. Molecular and morphological characterization of a novel dihydroanatoxin-a producing Microcoleus species (cyanobacteria) from the Russian River, California, USA. Harmful Algae. 2020;93:101767. doi 10.1016/j.hal.2020.101767
11. Dong X., Zhang C., Li W., Weng S., Song W., Li J., Wang Y. Functional diversity of microbial communities in inactive seafloor sulfide deposits. FEMS Microbiol Ecol. 2021;97(8):fiab108. doi 10.1093/femsec/fiab108
12. Douglas S., Douglas D.D. Structural and geomicrobiological characteristics of a microbial community from a cold sulfide spring. Geomicrobiol J. 2001;18(4):401-422. doi 10.1080/014904501753210567
13. Elshahed M.S., Senko J.M., Najar F.Z., Kenton S.M., Roe B.A., Dewers T.A., Spear J.R., Krumholz L.R. Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol. 2003;69(9):5609-5621. doi 10.1128/AEM.69.9.5609-5621.2003
14. Engel A.S., Lee N., Porter M.L., Stern L.A., Bennett P.C., Wagner M. Filamentous “Epsilonproteobacteria” dominate microbial mats from sulfidic cave springs. Appl Environ Microbiol. 2003;69(9):5503- 5511. doi 10.1128/AEM.69.9.5503-5511.2003
15. Engel A.S., Porter M.L., Stern L.A., Quinlan S., Bennett P.C. Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic “Epsilonproteobacteria”. FEMS Microbiol Ecol. 2004;51(1):31-53. doi 10.1016/j.femsec.2004.07.004
16. Fliermans C.B. Ecology of Legionella: from data to knowledge with a little wisdom. Microb Ecol. 1996;32(2):203-228. doi 10.1007/BF00185888
17. Fomin G.S. Water. Control of Chemical, Bacterial and Radiation Safety According to International Standards. Encyclopedic reference book. Moscow: Protector Publ., 2000 (in Russian)
18. Gorbunov M.Y., Khlopko Y.A., Kataev V.Y., Umanskaya M.V. Bacterial diversity in attached communities of a cold high-sulfide water body in European Russia. Microbiology. 2022;91:77-90. doi 10.1134/S0026261722010040
19. Gulecal-Pektas Y., Temel M. A window to the subsurface: microbial diversity in hot springs of a sulfidic cave (Kaklik, Turkey). Geomicrobiol J. 2016;34(4):374-384. doi 10.1080/01490451.2016.1204374
20. Hahn C.R., Farag I.F., Murphy C.L., Podar M., Elshahed M.S., Youssef N.H. Microbial diversity and sulfur cycling in an early earth analogue: from ancient novelty to modern commonality. mBio. 2022;13(2):e0001622. doi 10.1128/mbio.00016-22
21. Hamilton T.L., Jones D.S., Schaperdoth I., Macalady J.L. Metagenomic insights into S(0) precipitation in a terrestrial subsurface lithoautotrophic ecosystem. Front Microbiol. 2015;5:756. doi 10.3389/fmicb.2014.00756
22. Hammer Ø., Harper D.A.T., Ryan P.D. PAST: PAleontological STatistics software package for education and data analysis. Palaeontol Electronica. 2001;4(1):1-9 Headd B., Engel A.S. Biogeographic congruency among bacterial communities from terrestrial sulfidic springs. Front Microbiol. 2014;5: 473. doi 10.3389/fmicb.2014.00473
23. Howarth R., Unz R.F., Seviour E.M., Seviour R.J., Blackall L.L., Pickup R.W., Jones J.G., Yaguchi J., Head I.M. Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov. Int J Syst Bacteriol. 1999;49(Pt.4):1817-1827. doi 10.1099/00207713-49-4-1817
24. Inagaki F., Takai K., Nealson K.H., Horikoshi K. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol. 2004;54(Pt.5): 1477-1482. doi 10.1099/ijs.0.03042-0
25. Jiang F., Li W., Xiao M., Dai J., Kan W., Chen L., Li W., Fang C., Peng F. Luteolibacter luojiensis sp. nov., isolated from Arctic tundra soil, and emended description of the genus Luteolibacter. Int J Syst Evol Microbiol. 2012;62(Pt.9):2259-2263. doi 10.1099/ijs.0.037309-0
26. Karl D.M., Wirsen C.O., Jannasch H.W. Deep-sea primary production at the Galápagos hydrothermal vents. Science. 1980;207(4437):1345- 1347. doi 10.1126/science.207.4437.1345
27. Klatt J.M., Meyer S., Häusler S., Macalady J.L., de Beer D., Polerecky L. Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy. ISME J. 2016;10(4):921-933. doi 10.1038/ismej.2015.167
28. Knittel K., Kuever J., Meyerdierks A., Meinke R., Amann R., Brinkhoff T. Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. Int J Syst Evol Microbiol. 2005;55(Pt.2):781-786. doi 10.1099/ijs. 0.63362-0
29. Kodama Y., Watanabe K. Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int J Syst Evol Microbiol. 2004;54(Pt.6):2297-2300. doi 10.1099/ijs.0.63243-0
30. Kojima H., Fukui M. Thiomicrorhabdus aquaedulcis sp. nov., a sulfuroxidizing bacterium isolated from lake water. Int J Syst Evol Microbiol. 2019;69(9):2849-2853. doi 10.1099/ijsem.0.003567
31. Kononov V.I. Geochemistry of Thermal Areas of Modern Volcanism (rift zones and island arcs). Moscow: Nauka Publ., 1983 (in Russian) Kuang B., Xiao R., Hu Y., Wang Y., Zhang L., Wei Z., Bai J., Zhang K., Acuña J.J., Jorquera M.A., Pan W. Metagenomics reveals biogeochemical processes carried out by sediment microbial communities in a shallow eutrophic freshwater lake. Front Microbiol. 2023;13: 1112669. doi 10.3389/fmicb.2022.1112669
32. Kumar R., Verma H., Haider S., Bajaj A., Sood U., Ponnusamy K., Nagar S., Shakarad M.N., Negi R.K., Singh Y., Khurana J.P., Gilbert J.A., Lal R. Comparative genomic analysis reveals habitat-specific genes and regulatory hubs within the genus Novosphingobium. mSystems. 2017;2(3):e00020-17. doi 10.1128/mSystems.00020-17
33. Kumar U., Panneerselvam P., Gupta V.V.S.R., Manjunath M., Priyadarshinee P., Sahoo A., Dash S.R., Kaviraj M., Annapurna K. Diversity of sulfur-oxidizing and sulfur-reducing microbes in diverse ecosystems. In: Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability. Vol. 3. Singapore: Springer, 2018;3:65-89. doi 10.1007/978-981-10-6178-3_4
34. Ma Y., Wang J., Liu Y., Wang X., Zhang B., Zhang W., Chen T., Liu G., Xue L., Cui X. Nocardioides: “specialists” for hard-to-degrade pollutants in the environment. Molecules. 2023;28(21):7433. doi 10.3390/molecules28217433
35. Magnuson E., Altshuler I., Freyria N.J., Leveille R.J., Whyte L.G. Sulfur-cycling chemolithoautotrophic microbial community dominates a cold, anoxic, hypersaline Arctic spring. Microbiome. 2023;11(1): 203. doi 10.1186/s40168-023-01628-5
36. McMurdie P.J., Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. doi 10.1371/journal.pone.0061217
37. Mikhailov M.P., Tolstikhin N.I. Mineral Springs and Mud Lakes of Eastern Siberia, Their Hydrology, Balneochemistry and Balneological Significance. Irkutsk, 1946 (in Russian)
38. Namsaraev B.B., Danilova E.V., Barkhutova D.D., Khakhinov V.V. Mineral Springs and Therapeutic Lakes of South Buryatia. UlanUde: Buryat State University Publ., 2005 (in Russian) Norris P.R., Davis-Belmar C.S., Brown C.F., Calvo-Bado L.A. Autotrophic, sulfur-oxidizing actinobacteria in acidic environments. Extremophiles. 2011;15(2):155-163. doi 10.1007/s00792-011-0358-3
39. Nosalova L., Fecskeova L.K., Piknova M., Bonova K., Pristas P. Unique populations of sulfur-oxidizing bacteria in natural cold sulfur springs in Slovakia. Geomicrobiol J. 2023a;40(4):315-324. doi 10.1080/01490451.2023.2167021
40. Nosalova L., Mekadim C., Mrazek J., Pristas P. Thiothrix and Sulfurovum genera dominate bacterial mats in Slovak cold sulfur springs. Environ Microbiome. 2023b;18(1):72. doi 10.1186/s40793-023-00527-4
41. Nosalova L., Piknova M., Kolesarova M., Pristas P. Cold sulfur springs-neglected niche for autotrophic sulfur-oxidizing bacteria. Microorganisms. 2023c;11(6):1436. doi 10.3390/microorganisms11061436
42. Nunoura T., Hirai M., Miyazaki M., Kazama H., Makita H., Hirayama H., Furushima Y., Yamamoto H., Imach H., Takai K. Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexidominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. Microbes Environ. 2013;28(2):228-235. doi 10.1264/jsme2.me12193
43. Pérez-Ibarra B.M., Flores M.E., García-Varela M. Isolation and characterization of Bacillus thioparus sp. nov., chemolithoautotrophic, thiosulfate-oxidizing bacterium. FEMS Microbiol Lett. 2007; 271(2):289-296. doi 10.1111/j.1574-6968.2007.00729.x
44. Perreault N.N., Greer C.W., Andersen D.T., Tille S., Lacrampe-Couloume G., Lollar B.S., Whyte L.G. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic. Appl Environ Microbiol. 2008;74(22):6898-6907. doi 10.1128/AEM.00359-08
45. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590-D596. doi 10.1093/nar/gks1219
46. Rudolph C., Moissl C., Henneberger R., Huber R. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol Ecol. 2004;50:1-11. doi 10.1016/j.femsec.2004.05.006
47. Sapers H.M., Ronholm J., Raymond-Bouchard I., Comrey R., Osinski G.R., Whyte L.G. Biological characterization of microenvironments in a hypersaline cold spring Mars analog. Front Microbiol. 2017;8:2527. doi 10.3389/fmicb.2017.02527
48. Sarbu S.M., Kane T.C., Kinkle B.K. A chemoautotrophically based cave ecosystem. Science. 1996;272(5270):1953-1955. doi 10.1126/science.272.5270.1953
49. Song D., Chen X., Xu M. Characteristics and functional analysis of the secondary chromosome and plasmids in sphingomonad. Int Biodeterior Biodegrad. 2022;171:105402. doi 10.1016/j.ibiod.2022.105402
50. Tang D., Chen M., Huang X., Zhang G., Zeng L., Zhang G., Wu S., Wang Y. SRplot: a free online platform for data visualization and graphing. PLoS One. 2023;18(11):e0294236. doi 10.1371/journal.pone.0294236
51. Tkachuk V.G., Yasnitskaya N.V., Ankudinova G.A. Mineral Waters of the Buryat-Mongolian ASSR. Irkutsk, 1957 (in Russian) Tóth E., Szuróczki S., Kéki Z., Kosztik J., Makk J., Bóka K., Spröer C., Márialigeti K., Schumann P. Brevundimonas balnearis sp. nov., isolated from the well water of a thermal bath. Int J Syst Evol Microbiol. 2017;67(4):1033-1038. doi 10.1099/ijsem.0.001746
52. Watanabe M., Higashioka Y., Kojima H., Fukui M. Desulfosarcina widdelii sp. nov. and Desulfosarcina alkanivorans sp. nov., hydrocarbon-degrading sulfate-reducing bacteria isolated from marine sediment and emended description of the genus Desulfosarcina. Int J Syst Evol Microbiol. 2017;67(8):2994-2997. doi 10.1099/ijsem.0.002062
53. Weelink S.A., van Doesburg W., Saia F.T., Rijpstra W.I., Röling W.F., Smidt H., Stams A.J. A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol. 2009;70(3):575-585. doi 10.1111/j.1574-6941.2009.00778.x
54. Wright K.E., Williamson C., Grasby S.E., Spear J.R., Templeton A.S. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass. Front Microbiol. 2013;4:63. doi 10.3389/fmicb.2013.00063
55. Yang L.L., Liu Q., Liu H.C., Zhou Y.G., Xin Y.H. Flavobacterium laiguense sp. nov., a psychrophilic bacterium isolated from Laigu glacier on the Tibetan Plateau. Int J Syst Evol Microbiol. 2019;69(6): 1821-1825. doi 10.1099/ijsem.0.003400
56. Yin X., Zhou G., Wang H., Han D., Maeke M., Richter-Heitmann T., Wunder L.C., Aromokeye D.A., Zhu Q.Z., Nimzyk R., Elvert M., Friedrich M.W. Unexpected carbon utilization activity of sulfatereducing microorganisms in temperate and permanently cold marine sediments. ISME J. 2024;18(1):wrad014. doi 10.1093/ismejo/wrad014