Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Cystic fibrosis therapy: from symptoms to the cause of the disease

https://doi.org/10.18699/vjgb-25-31

Abstract

Cystic fibrosis (CF) is a disease with a broad clinical and genetic spectrum of manifestations, significantly impacting the quality and duration of life of patients. At present, a diagnosis of CF enables the disease to be identified at the earliest stages of its development. The accelerated advancement of scientific knowledge and contemporary research techniques has transformed the methodology employed in the treatment of CF, encompassing a spectrum of approaches from symptomatic management to pathogenetic therapies. Pathogenetic therapy represents an approach to treatment that aims to identify methods of restoring the function of the CFTR gene. The objective of this review was to analyse and summarize the available scientific data on the pathogenetic therapy of CF. This paper considers various approaches to the pathogenetic therapy of CF that are based on the use of targeted drugs known as CFTR modulators. The article presents studies employing gene therapy techniques for CF, which are based on the targeted delivery of a normal copy of the CFTR gene cDNA to the respiratory tract via viral or non-viral vectors. Some studies have demonstrated the efficacy of RNA therapeutic interventions in restoring splicing, promoting the production of mature RNA, and increasing the functional expression of the CFTR protein. The review also analyzes literature data that consider methods of etiotropic therapy for CF, which consists of targeted correction of the CFTR gene using artificial restriction enzymes, the CRISPR/Cas9 system and a complex of peptide-nucleic acids. In a prospective plan, the use of cell therapy methods in the treatment of lung damage in CF is considered.

About the Authors

T N. Kireeva
Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



D. I. Zhigalina
Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



N. A. Skryabin
Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



References

1. Alton E.W.F.W., Armstrong D.K., Ashby D., Bayfield K.J., Bilton D., Bloomfield E.V., Boyd A.C., … Waller M.D., Wasowicz M.Y., Wilson J.M., Wolstenholme-Hogg P., UK Cystic Fibrosis Gene Therapy Consortium. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebocontrolled, phase 2b trial. Lancet Respir Med. 2015;3(9):684-691. doi 10.1016/S2213-2600(15)00245-3

2. Amelina E.L., Krasovskiy S.A., Usacheva M.V., Krylova N.A. Pathogenic treatment of cystic fibrosis: the first clinical case in Russia. Pulmonologiya = Russian Pulmonology. 2017;27(2):298-301. doi 10.18093/0869-0189-2017-27-2-298-301 (in Russian)

3. Amelina E.L., Krasovskiy S.A., Shumkova G.L., Krylova N.A. Тargeted therapy for CF patients with F508del/F508del genotype. Pulmonologiya = Russian Pulmonology. 2019;29(2):235-238. doi 10.18093/0869-0189-2019-29-2-235-238 (in Russian)

4. Bell S.C., Mall M.A., Gutierrez H., Macek M., Madge S., Davies J.C., Burgel P.R., … Southern K.W., Sivam S., Stephenson A.L., Zampoli M., Ratjen F. The future of cystic fibrosis care: a global perspective. Lancet Respir Med. 2020;8(1):65-124. doi 10.1016/S22132600(19)30337-6

5. Bengtson C., Silswal N., Baumlin N., Yoshida M., Dennis J., Yerrathota S., Kim M., Salathe M. The CFTR amplifier nesolicaftor rescues TGF-β1 inhibition of modulator-corrected F508del CFTR function. Int J Mol Sci. 2022;23(18):10956. doi 10.3390/ijms231810956

6. Bessonova L., Volkova N., Higgins M., Bengtsson L., Tian S., Simard C., Konstan M.W., Sawicki G.S., Sewall A., Nyangoma S., Elbert A., Marshall B.C., Bilton D. Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax. 2018;73(8):731-740. doi 10.1136/thoraxjnl-2017-210394

7. Boyle M.P., Bell S.C., Konstan M.W., McColley S.A., Rowe S.M., Rietschel E., Huang X., Waltz D., Patel N.R., Rodman D.; VX09809-102 study group. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med. 2014;2(7):527-538. doi 10.1016/S2213-2600(14)70132-8

8. Cao H., Ouyang H., Laselva O., Bartlett C., Zhou Z.P., Duan C., Gunawardena T., Avolio J., Bear C.E., Gonska T., Hu J., Moraes T.J. A helper-dependent adenoviral vector rescues CFTR to wildtype functional levels in cystic fibrosis epithelial cells harbouring class I mutations. Eur Respir J. 2020;56(5):2000205. doi 10.1183/13993003.00205-2020

9. Dechecchi M.C., Tamanini A., Cabrini G. Molecular basis of cystic fibrosis: from bench to bedside. Ann Transl Med. 2018;6(17):334. doi 10.21037/atm.2018.06.48

10. Egan M.E. Emerging technologies for cystic fibrosis transmembrane conductance regulator restoration in all people with CF. Pediatr Pulmonol. 2021;56(1):32-39. doi 10.1002/ppul.2496

11. Elborn J.S. Cystic fibrosis. Lancet. 2016;388(10059):2519-2531. doi 10.1016/S0140-6736(16)00576-6

12. Fanen P., Wohlhuter-Haddad A., Hinzpeter A. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int J Biochem Cell Biol. 2014;52:94-102. doi 10.1016/j.biocel.2014.02.023

13. Flume P.A., Liou T.G., Borowitz D.S., Li H., Yen K., Ordoñez C.L., Geller D.E.; VX 08-770-104 Study Group. Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest. 2012;142(3):718-724. doi 10.1378/chest.11-2672

14. Gembitskaya T.E., Chermensky A.G., Boytsova E.P. Cystic fibrosis today: progress and problems, promises of etiopathogenetic therapy. Vrach = The Doctor. 2012;2:5-8 (in Russian)

15. Ginter E.K. Gene therapy of hereditary diseases. Voprosy Meditsinskoi Khimii. 2000;46(3):264-278 (in Russian)

16. Gorinova Yu.V., Simonova O.I., Lazareva A.V., Chernevich V.P., Smirnov I.E. Experience of the sustainable use of inhalations of tobramycin solution in chronic Pseudomonas aeruginosa infection in children with cystic fibrosis. Rossijskij Pediatricheskij Zhurnal = Russ Pediatr J. 2015;18(3):50-53 (in Russian)

17. Hanssens L.S., Duchateau J., Casimir G.J. CFTR protein: not just a chloride channel? Cells. 2021;10(11):2844. doi 10.3390/cells10112844

18. Holkers M., Maggio I., Liu J., Janssen J.M., Miselli F., Mussolino C., Recchia A., Cathomen T., Gonçalves M.A. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41(5):e63. doi 10.1093/nar/gks1446

19. Kashirskaya N.Yu., Kapranov N.I. Experience in the treatment of exocrine pancreatic insufficiency in cystic fibrosis in Russia. Russ Med J. 2011;19(7):476-484 (in Russian)

20. Kashirskaya N.Yu., Kapranov N.I. Modern pharmacotherapeutic approaches to the treatment of cystic fibrosis. Farmateka. 2014; 3(276):38-43 (in Russian)

21. Keating D., Marigowda G., Burr L., Daines C., Mall M.A., McKone E.F., Ramsey B.W., Rowe S.M., Sass L.A., Tullis E., McKee C.M., Moskowitz S.M., Robertson S., Savage J., Simard C., Van Goor F., Waltz D., Xuan F., Young T., Taylor-Cousar J.L.; VX16-445-001 Study Group. VX-445 – Tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med. 2018;379(17):1612-1620. doi 10.1056/NEJMoa1807120

22. Kerem E., Konstan M.W., De Boeck K., Accurso F.J., Sermet-Gaudelus I., Wilschanski M., Elborn J.S., Melotti P., Bronsveld I., Fajac I., Malfroot A., Rosenbluth D.B., Walker P.A., McColley S.A., Knoop C., Quattrucci S., Rietschel E., Zeitlin P.L., Barth J., Elfring G.L., Welch E.M., Branstrom A., Spiegel R.J., Peltz S.W., Ajayi T., Rowe S.M.; Cystic Fibrosis Ataluren Study Group. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med. 2014;2(7):539-547. doi 10.1016/S2213-2600(14)70100-6

23. Koehler D.R., Sajjan U., Chow Y.H., Martin B., Kent G., TanswellA.K., McKerlie C., Forstner J.F., Hu J. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia. Proc Natl Acad Sci USA. 2003; 100(26):15364-15369. doi 10.1073/pnas.2436478100

24. Kondratieva E.I., Kashirskaya N.Yu., Kapranov N.I. (Eds.) Cystic Fibrosis: Definition, Diagnostic Criteria, Therapy. Moscow: BORGES Company Publ., 2018 (in Russian)

25. Krasnova M.G., Melianovskaya Y.L., Krasovskiy S.A., Bulatenko N.V., Efremova A.S., Bukharova T.B., Goldshtein D.V. Description of the clinical picture and assessment of functional activity of the CFTR channel in a patient with a complex allele [S466X; R1070Q]. Pulmonologiya = Russ Pulmonology J. 2023;33(2):233-242. doi 10.18093/0869-0189-2023-33-2-233-242 (in Russian)

26. Krasnovidova A.E., Simonova O.I., Chernevich V.P., Pakhomov A.V., Reykh A.P., Pushkov A.A. Genotype-phenotype correlation in siblings with cystic fibrosis. Rossijskij Pediatricheskij Zhurnal = Russ Pediatr J. 2023;26(3):159-167. doi 10.46563/1560-9561-2023-263-159-167 (in Russian)

27. Lee J.A., Cho A., Huang E.N., Xu Y., Quach H., Hu J., Wong A.P. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med. 2021;19(1):452. doi 10.1186/s12967-021-03099-4

28. Lomunova M.A., Gershovich P.M. Gene therapy for fibrosis: recent advances and future prospects. Acta Naturae. 2023;15(2):20-31. doi 10.32607/actanaturae.11708

29. Maule G., Arosio D., Cereseto A. Gene therapy for cystic fibrosis: progress and challenges of genome editing. Int J Mol Sci. 2020;21(11): 3903. doi 10.3390/ijms21113903

30. Moran O. On the structural organization of the intracellular domains of CFTR. Int J Biochem Cell Biol. 2014;52:7-14. doi 10.1016/j.biocel.2014.01.024

31. Olveira C., Padilla A., Dorado A., Contreras V., Garcia-Fuentes E., Rubio-Martin E., Porras N., Doña E., Carmona A., Olveira G. Inflammation and oxidation biomarkers in patients with cystic fibrosis: the influence of azithromycin. Eurasian J Med. 2017;49(2):118-123. doi 10.5152/eurasianjmed.2017.17010

32. OMIM.org [Internet]. Online Mendelian Inheritance in Man®. [cited 2023 Aug 28]. Available from: https://www.omim.org/

33. Piehler L., Thalemann R., Lehmann C., Thee S., Röhmel J., Syunyaeva Z., Stahl M., Mall M.A., Graeber S.Y. Effects of elexacaftor/ tezacaftor/ivacaftor therapy on mental health of patients with cystic fibrosis. Front Pharmacol. 2023;14:1179208. doi 10.3389/fphar.2023.1179208

34. Rafeeq M.M., Murad H.A.S. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med. 2017;15(1):84-92. doi 10.1186/s12967-017-1193-9

35. Ren H.Y., Grove D.E., De La Rosa O., Houck S.A., Sopha P., Van Goor F., Hoffman B.J., Cyr D.M. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Mol Biol Cell. 2013;24(19):3016-3024. doi 10.1091/mbc.E13-05-0240

36. Rommens J.M., Iannuzzi M.C., Kerem B., Drumm M.L., Melmer G., Dean M., Rozmahel R., Cole J.L., Kennedy D., Hidaka N., Zsiga M., Buchwald M., Tsui L.-C., Riordan J.R., Collins F.S. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 2006;245(4922):1059-1065. doi 10.1126/science.2772657

37. Sherman V.D., Kapranov N.I., Kashirskaya N.Yu. Dornase alpha (Pulmozyme) for the complex treatment of bronchopulmonary process in cystic fibrosis patients. Farmateka. 2011;11(224):42-45 (in Russian)

38. Simonova O.I., Gorinova Yu.V., Chernevich V.P. Cystic fibrosis: a breakthrough in 21st-century therapy. Rossijskij Pediatricheskij Zhurnal = Russ Pediatr J. 2020;23(1):35-41. doi 10.18821/15609561-2020-23-1-35-41 (in Russian)

39. Smirnikhina S.A., Lavrov V.A. Modern pathogenesis-based methods and development of new gene and cell-based methods for cystic fibrosis treatment. Genes Cells. 2018;13(3):23-31. doi 10.23868/201811029 (in Russian)

40. Smirnikhina S.A., Kondratyeva E.V., Anuchina A.A., Zaynitdinova M.I., Lavrov A.V. Modeling of cystic fibrosis in HEK293T cell culture and development of a method for the correction of F508del mutation. Medicinskij Vestnik Severnogo Kavkaza = Medical News of North Caucasus. 2020;15(2):158-162. doi 10.14300/mnnc.2020.15038 (in Russian)

41. Spielberg D.R., Clancy J.P. Cystic fibrosis and its management through established and emerging therapies. Annu Rev Genomics Hum Genet. 2016;17:155-175. doi 10.1146/annurev-genom-090314-050024

42. Sui H., Xu X., Su Y., Gong Z., Yao M., Liu X., Zhang T., Jiang Z., Bai T., Wang J., Zhang J., Xu C., Luo M. Gene therapy for cystic fibrosis: challenges and prospects. Front Pharmacol. 2022;13:1015926. doi 10.3389/fphar.2022.1015926

43. Suzuki S., Crane A.M., Anirudhan V., Barillà C., Matthias N., Randell S.H., Rab A., Sorscher E.J., Kerschner J.L., Yin S., Harris A., Mendel M., Kim K., Zhang L., Conway A., Davis B.R. Highly efficient gene editing of cystic fibrosis patient-derived airway basal cells results in functional CFTR correction. Mol Ther. 2020;28(7): 1684-1695. doi 10.1016/j.ymthe.2020.04.021

44. Taylor-Cousar J.L., Munck A., McKone E.F., van der Ent C.K., Moeller A., Simard C., Wang L.T., Ingenito E.P., McKee C., Lu Y., Lekstrom-Himes J., Elborn J.S. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med. 2017; 377(21):2013-2023. doi 10.1056/NEJMoa1709846

45. Van Goor F., Straley K.S., Cao D., González J., Hadida S., Hazlewood A., Joubran J., Knapp T., Makings L.R., Miller M., Neuberger T., Olson E., Panchenko V., Rader J., Singh A., Stack J.H., Tung R., Grootenhuis P.D., Negulescu P. Rescue of ΔF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol. 2006;290(6):L1117-L1130. doi 10.1152/ajplung.00169.2005

46. Van Goor F., Hadida S., Grootenhuis P.D., Burton B., Cao D., Neuberger T., Turnbull A., Singh A., Joubran J., Hazlewood A., Zhou J., McCartney J., Arumugam V., Decker C., Yang J., Young C., Olson E.R., Wine J.J., Frizzell R.A., Ashlock M., Negulescu P. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA. 2009;106(44):18825-18830. doi 10.1073/pnas.0904709106

47. Wainwright C.E., Elborn J.S., Ramsey B.W., Marigowda G., Huang X., Cipolli M., Colombo C., Davies J.C., De Boeck K., Flume P.A., Konstan M.W., McColley S.A., McCoy K., McKone E.F., Munck A., Ratjen F., Rowe S.M., Waltz D., Boyle M.P.; TRAFFIC Study Group; TRANSPORT Study Group. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(18):1783-1784. doi 10.1056/NEJMc1510466

48. Wang G. Genome editing for cystic fibrosis. Cells. 2023;12(12):1555. doi 10.3390/cells12121555

49. Xia E., Zhang Y., Cao H., Li J., Duan R., Hu J. TALEN-mediated gene targeting for cystic fibrosis-gene therapy. Genes (Basel). 2019; 10(1):39. doi 10.3390/genes10010039

50. Zainal Abidin N., Haq I.J., Gardner A.I., Brodlie M. Ataluren in cystic fibrosis: development, clinical studies and where are we now? Expert Opin Pharmacother. 2017;18(13):1363-1371. doi 10.1080/14656566.2017.1359255


Review

Views: 294


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)