Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Роль ретроэлементов в развитии болезни Паркинсона

https://doi.org/10.18699/vjgb-25-32

Аннотация

Болезнь Паркинсона – второе по распространенности нейродегенеративное заболевание, характеризующееся накоплением альфа-синуклеина и телец Леви в черной субстанции головного мозга. Генетические исследования свидетельствуют об ассоциации с болезнью различных SNP, многие из которых расположены в межгенных и интронных областях, где локализованы также ретротранспозоны и произошедшие от них гены некодирующих РНК. В связи с этим сделано предположение о влиянии SNP в генах ретроэлементов на развитие болезни Паркинсона. Фактором предрасположенности является активация ретротранспозонов с возрастом, поскольку заболевание ассоциировано со старением. Предложена гипотеза о том, что альфа-синуклеин накапливается в головном мозге вследствие его взаимодействия с транскриптами активированных ретроэлементов. В результате дефектного противовирусного ответа и большого количества РНК-мишеней для данного белка его агрегаты образуют тельца Леви в нейронах с последующим воспалением черной субстанции и активацией нейродегенеративных процессов. В качестве доказательства приведены данные о роли альфа-синуклеина в противовирусном ответе со связыванием с РНК вирусов, которые характеризуются способностью активировать ретроэлементы, произошедшие в эволюции от встроенных в геном человека экзогенных вирусов. Обнаружены также активированные LINE1-ретроэлементы в головном мозге, эндогенные ретровирусы и LINE1 в сыворотке крови пациентов с болезнью Паркинсона. Дополнительный механизм, способствующий прогрессированию болезни, представляет собой дисфункция митохондрий вследствие инсерций в их геномы Alu-элементов с помощью ферментов LINE1. Описаны механизмы влияния активированных ретротранспозонов на произошедшие от них в эволюции микроРНК. Анализ научной литературы позволил выявить 35 таких микроРНК (miR-1246, -1249, -1271, -1273, -1303, -151, -211, -28, -31, -320b, -320d, -330, -335, -342, -374a, -374b, -421, -4293, -4317, -450b, -466, -487b, -493, -495, -5095, -520d, -576, -585, -6088, -619, -625, -626, -769, -885, -95), ассоциированных с болезнью Паркинсона, которые могут стать перспективными мишенями для ее лечения и диагностики.

Об авторе

Р. Н. Мустафин
Башкирский государственный медицинский университет
Россия

Уфа



Список литературы

1. Abrusán G. Somatic transposition in the brain has the potential to influence the biosynthesis of metabolites involved in Parkinson’s disease and schizophrenia. Biol Direct. 2012;7:41. doi 10.1186/1745-6150-7-41

2. Alam M.M., Yang D., Li X.-Q., Liu J., Back T.C., Trivett A., Karim B., Barbut D., Zasloff M., Oppenheim J.J. Alpha synuclein, the culprit in Parkinson disease, is required for normal immune function. Cell Rep. 2022;38(2):110090. doi 10.1016/j.celrep.2021.110090

3. Baeken M.W., Moosmann B., Hajieva P. Retrotransposon activation by distressed mitochondria in neurons. Biochem Biophys Res Commun. 2020;525(3):570-575. doi 10.1016/j.bbrc.2020.02.106

4. Bantle C.M., Rocha S.M., French C.T., Phillips A.T., Tran K., Olson K.E., Bass T.A., Aboellail T., Smeyne R.J., Tjalkens R.B. Astrocyte inflammatory signaling mediates α-synuclein aggregation and dopaminergic neuronal loss following viral encephalitis. Exp Neurol. 2021;346:113845. doi 10.1016/j.expneurol.2021.113845

5. Barbut D., Stolzenberg E., Zasloff M. Gastrointestinal immunity and alpha-synuclein. J Parkinsons Dis. 2019;9(s2):S313-S322. doi 10.3233/JPD-191702

6. Beatman E.L., Massey A., Shives K.D., Burrack K.S., Chamanian M., Morrison T.E., Beckham J.D. Alpha-synuclein expression restricts RNA viral infections in the brain. J Virol. 2015;90(6):2767-82. doi 10.1128/JVI.02949-15

7. Behbahanipour M., Peymani M., Salari M., Hashemi M.S., Nasr-Esfahani M.H., Ghaedi K. Expression profiling of blood microRNAs 885, 361, and 17 in the patients with the Parkinson’s disease: integrating interaction data to uncover the possible triggering age-related mechanisms. Sci Rep. 2019;9(1):13759. doi 10.1038/s41598019-50256-3

8. Bian W., Li Y., Zhu H., Gao S., Niu R., Wang C., Zhang H., Qin X., Li S. miR-493 by regulating of c-Jun targets Wnt5a/PD-L1-inducing esophageal cancer cell development. Thorac Cancer. 2021;12(10): 1579-1588. doi 10.1111/1759-7714.13950

9. Blaudin de Thé F.X., Rekaik H., Peze-Heidsieck E., Massiani-Beaudoin O., Joshi R.L., Fuchs J., Prochiantz A. Engrailed homeoprotein blocks degeneration in adult dopaminergic neurons through LINE-1 repression. EMBO J. 2018;37(15):e97374. doi 10.15252/embj.201797374

10. Blauwendraat C., Heilbron K., Vallerga C.L., Bandres-Ciga S., von Coelln R., Pihlstrom L., Simón-Sánchez J., Schulte C., Sharma M., Krohn L., Siitonen A., Iwaki H., Leonard H., Noyce A.J., Tan M., Gibbs J.R., Nalls M.A., Singleton A.B.; International Parkinson’s Disease Genomics Consortium (IPDGC). Parkinson’s disease age at onset genome-wide association study: defining heritability, genetic loci, and α-synuclein mechanisms. Mov Disord. 2019;34(6):866875. doi 10.1002/mds.27659

11. Boros F.A., Vecsei L., Klivenyi P. NEAT1 on the field of Parkinson’s disease: offence, defense, or a player on the bench? J. Parkinson’ s Dis. 2021;11(1):123-138. doi 10.3233/JPD-202374

12. Cai M., Chai S., Xiong T., Wei J., Mao W., Zhu Y., Li X., Wei W., Dai X., Yang B., Liu W., Shu B., Wang M., Lu T., Cai Y., Zheng Z., Mei Z., Zhou Y., Yang J., Zhao J., Shen L., Ho J.W.K., Chen J., Xiong N. Aberrant expression of circulating microRNA leads to the dysregulation of alpha-synuclein and other pathogenic genes in Parkinson’s disease. Front Cell Dev Biol. 2021;9:695007. doi 10.3389/fcell.2021.695007

13. Chalertpet K., Pin-On P., Aporntewan C., Patchsung M., Ingrungruanglert P., Israsena N., Mutirangura A. Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells. Front Genet. 2019;10:645. doi 10.3389/fgene.2019.00645

14. Chatterjee P., Roy D. Comparative analysis of RNA-Seq data from brain and blood samples of Parkinson’s disease. Biochem Biophys Res Commun. 2017;484(3):557-564. doi 10.1016/j.bbrc.2017.01.121

15. Chen X., Zeng K., Xu M., Liu X., Hu X., Xu T., He B., Pan Y., Sun H., Wang S. P53-induced miR-1249 inhibits tumor growth, metastasis, and angiogenesis by targeting VEGFA and HMGA2. Cell Death Dis. 2019;10(2):131. doi 10.1038/s41419-018-1188-3

16. Cho J., Paszkowski J. Regulation of rice root development by a retrotransposon acting as a microRNA sponge. eLife. 2017;6:e30038. doi 10.7554/eLife.30038

17. Cornec A., Poirier E.Z. Interplay between RNA interference and transposable elements in mammals. Front Immunol. 2023;14:1212086. doi 10.3389/fimmu.2023.1212086

18. De Cecco M., Ito T., Petrashen A.P., Elias A.E., Skvir N.J., Sedivy J.M. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019;566(7742):73-78. doi 10.1038/s41586018-0784-9

19. de Koning A.P., Gu W., Castoe T.A., Batzer M.A., Pollock D.D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7:e1002384. doi 10.1371/journal.pgen.1002384

20. Dong Y., Xiong J., Ji L., Xue X. MiR-421 aggravates neurotoxicity and promotes cell death in Parkinson’s disease models by directly targeting MEF2D. Neurochem Res. 2021;46(2):299-308. doi 10.1007/s11064-020-03166-0

21. Elbarbary R.A., Maquat L.E. Distinct mechanisms obviate the potentially toxic effects of inverted-repeat Alu elements on cellular RNA metabolism. Nat Struct Mol Biol. 2017;24(6):496-498. doi 10.1038/nsmb.3416

22. Feusier J., Watkins W.S., Thomas J., Farrell A., Witherspoon D.J., Baird L., Ha H., Xing J., Jorde L.B. Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res. 2019; 29(10):1567-1577. doi 10.1101/gr.247965.118

23. Fröhlich A., Pfaff A.L., Bubb V.J., Quinn J.P., Koks S. Reference LINE-1 insertion polymorphisms correlate with Parkinson’s disease progression and differential transcript expression in the PPMI cohort. Sci Rep. 2023;13(1):13857. doi 10.1038/s41598-023-41052-1

24. Fröhlich A., Pfaff A.L., Middlehurst B., Hughes L.S., Bubb V.J., Quinn J.P., Koks S. Deciphering the role of a SINE-VNTR-Alu retrotransposon polymorphism as a biomarker of Parkinson’s disease progression. Sci Rep. 2024;14(1):10932. doi 10.1038/s41598-024-61753-5

25. Gazquez-Gutierrez A., Witteveldt J., Heras S., Macias S.R. Sensing of transposable elements by the antiviral innate immune system. RNA. 2021;27(7):735-752. doi 10.1261/rna.078721.121

26. Ghosh A., Tyson T., George S., Hildebrandt E.N., Steiner J.A., Madaj Z., Schulz E., Machiela E., McDonald W.G., Escobar Galvis M.L., Kordower J.H., Van Raamsdonk J.M., Colca J.R., Brundin P. Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease. Sci Transl Med. 2016;8(368):368ra174. doi 10.1126/scitranslmed.aag2210

27. Gorbunova V., Seluanov A., Mita P., McKerrow W., Fenyö D., Boeke J.D., Linker S.B., Gage F.H., Kreiling J.A., Petrashen A.P., Woodham T.A., Taylor J.R., Helfand S.L., Sedivy J.M. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021;596(7870):43-53. doi 10.1038/s41586-021-03542-y

28. Greenawalt E.J., Edmonds M.D., Jain N., Adams C.M., Mitra R., Eischen C.M. Targeting of SGK1 by miR-576-3p inhibits lung adenocarcinoma migration and invasion. Mol Cancer Res. 2019; 17(1):289-298. doi 10.1158/1541-7786.MCR-18-0364

29. Han C., Song Y., Lian C. MiR-769 inhibits colorectal cancer cell proliferation and invasion by targeting HEY1. Med Sci Monit. 2018; 24:9232-9239. doi 10.12659/MSM.911663

30. He S., Huang L., Shao C., Nie T., Xia L., Cui B., Lu F., Zhu L., Chen B., Yang Q. Several miRNAs derived from serum extracellular vesicles are potential biomarkers for early diagnosis and progression of Parkinson’s disease. Transl Neurodegener. 2021;10(1):25. doi 10.1186/s40035-021-00249-y

31. He X., Chen S.Y., Yang Z., Zhang J., Wang W., Liu M.Y., Niu Y., Wei X.M., Li H.M., Hu W.N., Sun G.G. miR-4317 suppresses nonsmall cell lung cancer (NSCLC) by targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2). J Exp Clin Cancer Res. 2018; 37(1):230. doi 10.1186/s13046-018-0882-4

32. Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development. Dev Cell. 2018;46:132-134. doi 10.1016/j.devcel.2018.06.022

33. Hossain M.B., Islam M.K., Adhikary A., Rahaman A., Islam M.Z. Bioinformatics approach to identify significant biomarkers, drug targets shared between Parkinson’s disease and bipolar disorder: a pilot study. Bioinform Biol Insights. 2022;16:11779322221079232. doi 10.1177/11779322221079232

34. Iravanpour F., Farrokhi M.R., Jafarinia M., Oliaee R.T. The effect of SARS-CoV-2 on the development of Parkinson’s disease: the role of α-synuclein. Hum Cell. 2024;37(1):1-8. doi 10.1007/s13577-02300988-2

35. Jang H., Boltz D.A., Webster R.G., Smeyne R.J. Viral parkinsonism. Biochim Biophys Acta. 2009;1792(7):714-721. doi 10.1016/j.bbadis.2008.08.001

36. Jin L., Wan W., Wang L., Wang C., Xiao J., Zhang F., Zhao J., Wang J., Zhan C., Zhong C. Elevated microRNA-520d-5p in the serum of patients with Parkinson’s disease, possibly through regulation of cereloplasmin expression. Neurosci Lett. 2018;687:88-93. doi 10.1016/j.neulet.2018.09.034

37. Jingyang Z., Jinhui C., Lu X., Weizhong Y., Yunjiu L., Haihong W., Wuyuan Z. Mir-320b inhibits pancreatic cancer cell proliferation by targeting FOXM1. Curr Pharm Biotechnol. 2021;22(8):1106-1113. doi 10.2174/1389201021999200917144704

38. Kamenova S., Aralbayeva A., Kondybayeva A., Akimniyazova A., Pyrkova A., Ivashchenko A. Evolutionary changes in the interactions of miRNA with mRNA of candidate genes for Parkinson’s disease. Front Genet. 2021;12:647288. doi 10.3389/fgene.2021.647288

39. Kern F., Fehlmann T., Violich I., Alsop E., Hutchins E., Kahraman M., Grammes N.L., Guimarães P., Backes C., Poston K.L., Casey B., Balling R., Geffers L., Krüger R., Galasko D., Mollenhauer B., Meese E., Wyss-Coray T., Craig D.W., Van Keuren-Jensen K., Keller A. Deep sequencing of sncRNAs reveals hallmarks and regulatory modules of the transcriptome during Parkinson’s disease progression. Nat Aging. 2021;1(3):309-322. doi 10.1038/s43587021-00042-6

40. Khoo S.K., Petillo D., Kang U.J., Resau J.H., Berryhill B., Linder J., Forsgren L., Neuman L.A., Tan A.C. Plasma-based circulating MicroRNA biomarkers for Parkinson’s disease. J Parkinsons Dis. 2012;2(4):321-331. doi 10.3233/JPD-012144

41. Koks S., Pfaff A.L., Singleton L.M., Bubb V.J., Quinn J.P. Non-reference genome transposable elements (TEs) have a significant impact on the progression of the Parkinson’s disease. Exp Biol Med (Maywood). 2022;247(18):1680-1690. doi 10.1177/15353702221117147

42. Kulski J.K., Suzuki S., Shiina T., Pfaff A.L., Kõks S. Regulatory SVA retrotransposons and classical HLA genotyped-transcripts asso ciated with Parkinson’s disease. Front Immunol. 2024;15:1349030. doi 10.3389/fimmu.2024.1349030

43. Larsen P.A., Lutz M.W., Hunnicutt K.E., Mihovilovic M., SaundersA.M., Yoder A.D., Roses A.D. The Alu neurodegeneration hypothesis: a primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease. Alzheimers Dement. 2017;13(7):828-838. doi 10.1016/j.jalz.2017.01.017

44. Leblanc P., Vorberg I.M. Viruses in neurodegenerative diseases: more than just suspects in crimes. PLoS Pathog. 2022;18(8):e1010670. doi 10.1371/journal.ppat.1010670

45. Lee D.H., Bae W.H., Ha H., Park E.G., Lee Y.J., Kim W.R., Kim H.S. Z-DNA-containing long terminal repeats of human endogenous retrovirus families provide alternative promoters for human functional genes. Mol Cells. 2022;45(8):522-530. doi 10.14348/molcells.2022.0060

46. Li H., Shen S., Chen X., Ren Z., Li Z., Yu Z. miR-450b-5p loss mediated KIF26B activation promoted hepatocellular carcinoma progression by activating PI3K/AKT pathway. Cancer Cell Int. 2019;19:205. doi 10.1186/s12935-019-0923-x

47. Li L., Ren J., Pan C., Li Y., Xu J., Dong H., Chen Y., Liu W. Serum miR-214 serves as a biomarker for prodromal Parkinson’s disease. Front Aging Neurosci. 2021;13:700959. doi 10.3389/fnagi.2021.700959

48. Liu T., Yang Z., Liu S., Wei J. Parkinson’s disease as a risk factor for prostate adenocarcinoma: a molecular point of view. Gerontology. 2023;69(8):986-1001. doi 10.1159/000530088

49. Lu X., Sachs F., Ramsay L., Jacques P.E., Goke J., Bourque G., Ng H.H. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol. 2014;21(4): 423-425. doi 10.1038/nsmb.2799

50. Ma Y.M., Zhao L. Mechanism and therapeutic prospect of miRNAs in neurodegenerative diseases. Behav Neurol. 2023;2023:8537296. doi 10.1155/2023/8537296

51. Marreiros R., Muller-Schiffmann A., Trossbach S.V., Prikulis I., Hansch S., Weidtkamp-Peters S., Moreira A.R., Sahu S., Soloviev I., Selvarajah S., Lingappa V.R., Korth C. Disruption of cellular proteostasis by H1N1 influenza A virus causes alpha-synuclein aggregation. Proc Natl Acad Sci USA. 2020;117(12):6741-6751. doi 10.1073/pnas.1906466117

52. Marsh A.G., Cottrell M.T., Goldman M.F. Epigenetic DNA methylation profiling with MSRE: a quantitative NGS approach using a Parkinson’s Disease test case. Front Genet. 2016;7:191. doi 10.3389/fgene.2016.00191

53. Martins M., Rosa A., Guedes L.C., Fonseca B.V., Oliveira S.A. Convergence miRNA expression profiling, α-synuclein interaction and GWAS in Parkinson’s disease. PLoS One. 2011;6(10):e25443. doi 10.1371/journal.pone.0025443

54. McCue A.D., Nuthikattu S., Slotkin R.K. Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs. RNA Biol. 2013;10:1379-1395. doi 10.4161/rna.25555

55. Monogue B., Chen Y., Sparks H., Behbehani R., Chai A., Rajic A.J., Massey A., Kleinschmidt-Demasters B.K., Vermeren M., Kunath T., Beckham J.D. Alpha-synuclein supports type 1 interferon signalling in neurons and brain tissue. Brain. 2022;145(10):3622-3636. doi 10.1093/brain/awac192

56. Morais S., Bastos-Ferreira R., Sequeiros J., Alonso I. Genomic mechanisms underlying PARK2 large deletions identified in a cohort of patients with PD. Neurol Genet. 2016;2:e73. doi 10.1212/NXG.0000000000000073

57. Motawi T.K., Al-Kady R.H., Abdelraouf S.M., Senousy M.A. Empagliflozin alleviates endoplasmic reticulum stress and augments autophagy in rotenone-induced Parkinson’s disease in rats: Targeting the GRP78/PERK/eIF2α/CHOP pathway and miR-211-5p. Chem Biol Interact. 2022;362:110002. doi 10.1016/j.cbi.2022.110002

58. Mustafin R.N. The hypothesis of the origin of viruses from transposons. Mol. Genet. Microbiol. Virol. 2018;33(4):223-232. doi 10.3103/S0891416818040067

59. Mustafin R.N., Khusnutdinova E.K. Involvement of transposable elements in neurogenesis. Vavilov J Genet Breed. 2020;24(2):209-218. doi 10.18699/VJ20.613

60. Mustafin R.N., Khusnutdinova E.K. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2017;2017;21(6):742-749. doi 10.18699/VJ17.30-o (in Russian)

61. Mustafin R.N., Khusnutdinova E. Perspective for studying the relationship of miRNAs with transposable elements. Curr Issues Mol Biol. 2023;45(4):3122-3145. doi 10.3390/cimb45040204

62. Nair V.D., Ge Y. Alterations of miRNAs reveal a dysregulated molecular regulatory network in Parkinson’s disease striatum. Neurosci Lett. 2016;629:99-104. doi 10.1016/j.neulet.2016.06.061

63. Nalls M.A., Blauwendraat C., Vallerga C.L., Heilbron K., BandresCiga S., Chang D., Tan M., Iwaki H.; 23andMe Research Team; System Genomics of Parkinson’s Disease Consortium; International Parkinson’s Disease Genomics Consortium. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091-1102. doi 10.1016/S1474-4422(19)30320-5

64. Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A., Miga K.H., Philippy A.M. The complete sequence of a human genome. Science. 2022;376(6588):44-53. doi 10.1126/science.abj6987

65. Ohnmacht J., May P., Sinkkonen L., Krüger R. Missing heritability in Parkinson’s disease: the emerging role of non-coding genetic variation. J Neural Transm (Vienna). 2020;127(5):729-748. doi 10.1007/s00702-020-02184-0

66. Oliveira S.R., Dionísio P.A., Gaspar M.M., Correia Guedes L., Coelho M., Rosa M.M., Ferreira J.J., Amaral J.D., Rodrigues C.M.P. miR-335 targets LRRK2 and mitigates inflammation in Parkinson’s disease. Front Cell Dev Biol. 2021;9:661461. doi 10.3389/fcell.2021.661461

67. Park S.J., Jin U., Park S.M. Interaction between coxsackievirus B3 infection and alpha-synuclein in models of Parkinson’s disease. PLoS Pathog. 2021;17(10):e1010018. doi 10.1371/journal.ppat.1010018

68. Pascarella G., Hon C.C., Hashimoto K., Buscho A., Luginbuhl J., Parr C., Yip W.H., Abe K., Kratz A., Bonetti A., Agostini F., Severin J., Murayama S., Suzuki Y., Gustincich S., Frith M., Carninci P. Recombination of repeat elements generates somatic complexity in human genomes. Cell. 2022;185(16):3025-3040.e6. doi 10.1016/j.cell.2022.06.032

69. Peze-Heidsieck E., Bonnifet T., Znaidi R., Ravel-Godreuil C., Massiani-Beaudoin O., Joshi R.L., Fuchs J. Retrotransposons as a source of DNA damage in neurodegeneration. Front Aging Neurosci. 2022;13:786897. doi 10.3389/fnagi.2021.786897

70. Pfaff A.L., Bubb V.J., Quinn J.P., Koks S. An increased burden of highly active retrotransposition competent l1s is associated with Parkinson’s disease risk and progression in the PPMI cohort. Int J Mol Sci. 2020;21(18):6562. doi 10.3390/ijms21186562

71. Pfaff A.L., Bubb V.J., Quinn J.P., Koks S. Reference SVA insertion polymorphisms are associated with Parkinson’s disease progression and differential gene expression. NPJ Parkinsons Dis. 2021;7(1):44. doi 10.1038/s41531-021-00189-4

72. Playfoot C.J., Sheppard S., Planet E., Trono D. Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development. RNA. 2022;28:1157-1171. doi 10.1261/rna.079100.122

73. Qin L.X., Tan J.Q., Zhang H.N., Tang J.G., Jiang B., Shen X.M., Guo J.F., Tan L.M., Tang B., Wang C.Y. Preliminary study of hsamir-626 change in the cerebrospinal fluid in Parkinson’s disease. Neurol India. 2021;69(1):115-118. doi 10.4103/0028-3886.310102

74. Ravanidis S., Bougea A., Papagiannakis N., Koros C., Simitsi A.M., Pachi I., Breza M., Stefanis L., Doxakis E. Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients. Ann Clin Transl Neurol. 2020;7(9):1594-1607. doi 10.1002/acn3.51146

75. Ravel-Godreuil C., Massiani-Beaudoin O., Mailly P., Prochiantz A., Joshi R.L., Fuchs J. Perturbed DNA methylation by Gadd45b induces chromatin disorganization, DNA strand breaks and dopaminergic neuron death. iScience. 2021;24(7):102756. doi 10.1016/j.isci.2021.102756

76. Santerre M., Arjona S.P., Allen C.N., Callen S., Buch S., Sawaya B.E. HIV-1 Vpr protein impairs lysosome clearance causing SNCA/ alpha-synuclein accumulation in neurons. Autophagy. 2021;17(7): 1768-1782. doi 10.1080/15548627.2021.1915641

77. Sonobe R., Yang P., Suzuki M.M., Shinjo K., Iijima K., Nishiyama N., Miyata K., Kataoka K., Kajiyama H., Kondo Y. Long noncoding RNA TUG1 promotes cisplatin resistance in ovarian cancer via upregulation of DNA polymerase eta. Cancer Sci. 2024;115(6):19101923. doi 10.1111/cas.16150

78. Soreq L., Salomonis N., Bronstein M., Greenberg D.S., Israel Z., Bergman H., Soreq H. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci. 2013;6:10. doi 10.3389/fnmol.2013.00010

79. Sun Z., Chen J., Zhang J., Ji R., Xu W., Zhang X., Qian H. The role and mechanism of miR-374 regulating the malignant transformation of mesenchymal stem cells. Am J Transl Res. 2018;10(10): 3224-3232

80. Tang J., Pan H., Wang W., Qi C., Gu C., Shang A., Zhu J. MiR-495-3p and miR-143-3p co-target CDK1 to inhibit the development of cervical cancer. Clin Transl Oncol. 2021;23(11):2323-2334. doi 10.1007/s12094-021-02687-6

81. Thomas R., Connolly K.J., Brekk O.R., Hinrich A.J., Hastings M.L., Isacson O., Hallett P.J. Viral-like TLR3 induction of cytokine networks and α-synuclein are reduced by complement C3 blockade in mouse brain. Sci Rep. 2023;13(1):15164. doi 10.1038/s41598-02341240-z

82. Tong D., Zhao Y., Tang Y., Ma J., Wang M., Li B., Wang Z., Li C. MiR487b suppressed inflammation and neuronal apoptosis in spinal cord injury by targeted Ifitm3. Metab Brain Dis. 2022;37(7):2405-2415. doi 10.1007/s11011-022-01015-3

83. Van Bree E.J., Guimarães R.L.F.P., Lundberg M., Blujdea E.R., Rosenkrantz J.L., White F.T.G., Poppinga J., Ferrer-Raventós P., Schneider A.E., Clayton I., Haussler D., Reinders M.J.T., Holstege H., Ewing A.D., Moses C., Jacobs F.M.J. A hidden layer of structural variation in transposable elements reveals potential genetic modifiers in human disease-risk loci. Genome Res. 2022;32(4):656-670. doi 10.1101/gr.275515.121

84. Vojtechova I., Machacek T., Kristofikova Z., Stuchlik A., Petrasek T. Infectious origin of Alzheimer’s disease: amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog. 2022;18(11): e1010929. doi 10.1371/journal.ppat.1010929

85. Wallace A.D., Wendt G.A., Barcellos L.F., de Smith A.J., Walsh K.M., Metayer C., Costello J.F., Wiemels J.L., Francis S.S. To ERV is human: a phenotype-wide scan linking polymorphic human endogenous Retrovirus-K insertions to complex phenotypes. Front Genet. 2018;9:298. doi 10.3389/fgene.2018.00298

86. Wang H., Liu X., Tan C., Zhou W., Jiang J., Peng W., Zhou X., Mo L., Chen L. Bacterial, viral, and fungal infection-related risk of Parkinson’s disease: meta-analysis of cohort and case-control studies. Brain Behav. 2020;10(3):e01549. doi 10.1002/brb3.1549

87. Wu D.M., Wang S., Wen X., Han X.R., Wang Y.J., Shen M., Fan S.H., Zhuang J., Zhang Z.F., Shan Q., Li M.Q., Hu B., Sun C.H., Lu J., Chen G.Q., Zheng Y.L. Suppression of microRNA-342-3p increases glutamate transporters and prevents dopaminergic neuron loss through activating the Wnt signaling pathway via p21-activated kinase 1 in mice with Parkinson’s disease. J Cell Physiol. 2019; 234(6):9033-9044. doi 10.1002/jcp.27577

88. Yufeng Z., Ming Q., Dandan W. MiR-320d inhibits progression of EGFR-positive colorectal cancer by targeting TUSC3. Front Genet. 2021;12:738559. doi 10.3389/fgene.2021.738559

89. Zhang Q., Yan Y.F., Lv Q., Li Y.J., Wang R.R., Sun G.B., Pan L., Hu J.X., Xie N., Zhang C., Tian B.C., Jiao F., Xu S., Wang P.Y., Xie S.Y. miR-4293 upregulates lncRNA WFDC21P by suppressing mRNA-decapping enzyme 2 to promote lung carcinoma proliferation. Cell Death Dis. 2021;12(8):735. doi 10.1038/s41419-02104021-y

90. Zhang Y., Xia Q., Lin J. LncRNA H19 attenuates apoptosis in MPTP-induced Parkinson’s disease through regulating miR-585-3p/PIK3R3. Neurochem Res. 2020;45:1700-1710. doi 10.1007/s11064-02003035-w

91. Zhong C., Zhang Q., Bao H., Li Y., Nie C. Hsa_circ_0054220 upregulates HMGA1 by the competitive RNA pattern to promote neural impairment in MPTP model of Parkinson’s disease. Appl Biochem Biotechnol. 2023;47:40-42. doi 10.1007/s12010-023-04740-2


Рецензия

Просмотров: 150


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)