Genetic variants of the DLK1, KISS1R, MKRN3 genes in girls with precocious puberty
https://doi.org/10.18699/vjgb-25-33
Abstract
Precocious puberty (PP, E30.1, Е22.8, Е30.9 according to ICD 10, MIM 176400, 615346) in children is a disorder in which secondary sexual characteristics appear earlier than the age norm. The timing of puberty is regulated by a complex interaction of genetic and epigenetic factors, as well as environmental and nutritional factors. This study aimed to search for pathogenic, likely pathogenic variants or variants of uncertain significance (VUS) in the KISS1, GPR54, DLK1, and MKRN3 genes in patients with the clinical picture of PP and normal karyotype by massive parallel sequencing. All identified genetic variants were confirmed by Sanger sequencing. The pathogenicity of identified genetic variants and the functional significance of the protein synthesized by them were analyzed according to recommendations for interpretation of NGS analysis results using online algorithms for pathogenicity prediction (Variant Effect Predictor, Franklin, Varsome, and PolyPhen2). Clinically significant genetic variants were detected in the heterozygous state in the KISS1R, DLK1, and MKRN3 genes in 5 of 52 probands (9.6 %) with PP, including 3 of 33 (9.1 %) in the group with central PP and 2 of 19 (10.5 %) in the group with gonadotropin-independent PP. Two children with gonadotropin-independent PP had VUS in the KISS1R gene (c.191T>C, p.Ile64Thr and c.233A>G, p.Asn78Ser), one of which was inherited from the father and the second, from the mother. The remaining patients with central PP had likely pathogenic genetic variants: DLK1:c.373delC(p.Gln125fs) de novo and DLK1:c.480delT(p.Gly161Alafs*49) of paternal origin. The third proband had a VUS variant in the MKRN3 gene (c.1487A>G, p.His496Arg), inherited from the father. All identified genetic variants were described for the first time in PP. Thus, in the present study, genetic variants in the KISS1R, DLK1, and MKRN3 genes in girls with PP were characterized.
About the Authors
E. A. SazhenovaRussian Federation
Tomsk
O. Yu. Vasilyeva
Russian Federation
Tomsk
E. A. Fonova
Russian Federation
Tomsk
M. B. Kankanam Pathiranage
Russian Federation
Tomsk
A. Yu. Sambyalova
Russian Federation
Irkutsk
E. E. Khramova
Russian Federation
Irkutsk
L. V. Rychkova
Russian Federation
Irkutsk
S. A. Vasilyev
Russian Federation
Tomsk
I. N. Lebedev
Russian Federation
Tomsk
References
1. Abreu A.P., Toro C.A., Song Y.B., Navarro V.M., Bosch M.A., Eren A., Liang J.N., Carroll R.S., Latronico A.C., Ronnekleiv O.K. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest. 2020;130(8):4486-4500. doi 10.1172/JCI136564
2. Baladrón V., Ruiz-Hidalgo M.J., Nueda M.L., Díaz-Guerra M.J.M., García-Ramírez J.J., Bonvini E., Gubina E., Laborda J. Dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp Cell Res. 2005;303(2):343-359. doi 10.1016/j.yexcr.2004.10.001
3. Brito V.N., Canton A.P.M., Seraphim C.E., Abreu A.P., Macedo D.B., Mendonca B.B., Kaiser U.B., Argente J., Latronico A.C. The congenital and acquired mechanisms implicated in the etiology of central precocious puberty. Endocr Rev. 2023;44(2):193-221. doi 10.1210/endrev/bnac020
4. Canton A.P.M., Krepischi A.C.V., Montenegro L.R., Costa S., Rosenberg C., Steunou V., Sobrier M.L., … Jorge A.A.L., Mendonca B.B., Netchine I., Brito V.N., Latronico A.C. Insights from the genetic characterization of central precocious puberty associated with multiple anomalies. Hum Reprod. 2021;36(2):506-518. doi 10.1093/humrep/deaa306
5. Canton A.P.M., Seraphim C.E., Montenegro L.R., Krepischi A.C.V., Mendonca B.B., Latronico A., Brito V.N. The genetic etiology is a relevant cause of central precocious puberty. Eur J Endocrinol. 2024;190(6):479-488. doi 10.1093/ejendo/lvae063
6. Eijkelenboom A., Tops B.B.J., van den Berg A., van den Brule A.J.C., Dinjens W.N.M., Dubbink H.J., Ter Elst A., … Vogel M.J., van Wezel T., Nederlof P.M., Schuuring E., Ligtenberg M.J.L. Recommendations for the clinical interpretation and reporting of copy number gains using gene panel NGS analysis in routine diagnostics. Virchows Arch. 2019;474(6):673-680. doi 10.1007/s00428-01902555-3
7. Fukami M., Suzuki E., Izumi Y., Torii T., Narumi S., Igarashi M., Miyado M., … Hata K., Umezawa A., Matsubara Y., Yamauchi J., Ogata T. Paradoxical gain-of-function mutant of the G-proteincoupled receptor PROKR2 promotes early puberty. J Cell Mol Med. 2017;21:2623-2626. doi 10.1111/jcmm.13146
8. Gomes L.G., Cunha-Silva M., Crespo R.P., Ramos C.O., Montenegro L.R., Canton A., Lees M., … Baracat E.C., Jorge A.A.L., Mendonca B.B., Brito V.N., Latronico A.C. DLK1 is a novel link between reproduction and metabolism. J Clin Endocrinol Metab. 2019;104(6):2112-2120. doi 10.1210/jc.2018-02010
9. Hu K., Zhao H., Chang H.M., Yu Y., Qiao J. Kisspeptin/kisspeptin receptor system in the ovary. Front Endocrinol. 2018;4(8):365. doi 10.3389/fendo.2017.00365
10. Hu Z., Chen R., Cai C. Association of genetic polymorphisms around the LIN28B gene and idiopathic central precocious puberty risks among Chinese girls. Pediatr Res. 2016;80:521-525. doi 10.1038/pr.2016.107
11. Lagno O.V., Plotnikova E.V., Shabalov N.P. To the question about premature adrenarche at girls (the literature review). Pediatr = Pediatrician. 2018;9(5):66-74. doi 10.17816/PED9566-74 (in Russian)
12. Macedo D.B., Kaiser U.B. DLK1, Notch signaling and the timing of puberty. Semin Reprod Med. 2019;37(4):174-181. doi 10.1055/s-0039-3400963
13. Maione L., Bouvattier C., Kaiser U.B. Central precocious puberty: recent advances in understanding the etiology and in the clinical approach. Clin Endocrinol. 2021;95(4):542-555. doi 10.1111/cen.14475
14. Ong K.K., Elks C.E., Li S., Zhao J.H., Luan J., Andersen L.B., Bingham S.A., ... Deloukas P., Barroso I., Mooser V., Loos R.J., Wareham N.J. Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet. 2009;41:729-733. doi 10.1038/ng.382
15. Ong K.K., Elks C.E., Wills A.K., Wong A., Wareham N.J., Loos R.J., Kuh D., Hardy R. Associations between the pubertal timing-related variant in LIN28B and BMI vary across the life course. J Clin Endocrinol Metab. 2011;96:E125-E129. doi 10.1210/jc.2010-0941
16. Perry J.R., Stolk L., Franceschini N., Lunetta K.L., Zhai G., McArdle P.F., Smith A.V., Aspelund T., Bandinelli S., Boerwinkle E., Cherkas L., Eiriksdottir G., Estrada K. Meta-analysis of genomewide association data identifies two loci influencing age at menarche. Nat Genet. 2009;41:648-650. doi 10.1038/ng.386
17. Perry J.R., Day F., Elks C.E., Sulem P., Thompson D.J., Ferreira T., He C., … Feenstra B., Franceschini N., Ganna A., Johnson A.D., Kjellqvist S. Parent-of-origin specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014;514(7520): 92-97. doi 10.1038/nature13545
18. Peterkova V.A., Alimova I.L., Bashnina E.B., Bezlepkina O.B., Bolotova N.V., Zubkova N.A., Kalinchenko N.Yu., Kareva M.A., Kiyaev A.V., Kolodkina A.A., Kostrova I.B., Makazan N.V., Malievskiy O.A., Orlova E.M., Petryaykina E.E., Samsonova L.N., Taranushenko T.E. Clinical guidelines «Precocious puberty». Problemy Endocrinologii = Problems of Endocrinology. 2021;67(5): 84-103. doi 10.14341/probl12821 (in Russian)
19. Rhie Y.J., Lee K.H., Ko J.M., Lee W.J., Kim J.H., Kim H.S. KISS1 gene polymorphisms in Korean girls with central precocious puberty. J Korean Med Sci. 2014;29(8):1120-1125. doi 10.3346/jkms.2014.29.8.1120
20. Roberts S.A., Kaiser U.B. Genetic etiologies of central precocious puberty and the role of imprinted genes. Eur J Endocrinol. 2020; 183(4):R107-R117. doi 10.1530/EJE-20-0103
21. Ryzhkova O.P., Kardymon O.L., Prokhorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., Afanasyev A.A., Zaklyazminskaya E.V., Rebrikov D.V., Savostyanov K.V., Glotov A.S., Kostareva A.A., Pavlov A.E., Golubenko M.V., Polyakov A.V., Kutsev S.I. Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2). Meditsinskaya Genetika = Medical Genetics. 2019;18(2):3-24. doi 10.25557/2073-7998.2019.02.3-24 (in Russian)
22. Sánchez-Solana B., Nueda M.L., Ruvira M.D., Ruiz-Hidalgo M.J., Monsalve E.M., Rivero S., García-Ramírez J.J., Díaz-Guerra M.J.M., Baladrón V., Labordaet J. The EGF-like proteins DLK1 and DLK2 function as inhibitory non-canonical ligands of NOTCH1 receptor that modulate each other’s activities. Biochim Biophys Acta. 2011;1813(6):1153-1164. doi 10.1016/j.bbamcr.2011.03.004
23. Shim Y.S., Lee H.S., Hwang J.S. Genetic factors in precocious puberty. Clin Exp Pediatr. 2022;65(4):172-181. doi 10.3345/cep.2021.00521
24. Silveira L.G., Noel S.D., Silveira-Neto A.P., Abreu A.P., Brito V.N., Santos M.G., Bianco S.D.C., … Escobar M.E., Arnhold I.J.P., Mendonca B.B., Kaiser U.B., Latronico A.C. Mutations of the KISS1 gene in disorders of puberty. J Clin Endocrinol Metab. 2010;95(5): 2276-2280. doi 10.1210/jc.2009-2421
25. Silveira-Neto A.P., Leal L.F., Emerman A.B., Henderson K.D., Piskounova E., Henderson B.E. Absence of functional LIN28B mutations in a large cohort of patients with idiopathic central precocious puberty. Horm Res Paediatr. 2012;78:144-150. doi 10.1159/000342212
26. Song Y., Kong Y., Xie X., Wang Y., Wang N. Association between precocious puberty and obesity risk in children: a systematic review and meta-analysis. Front Pediatr. 2023;11:1226933. doi 10.3389/fped.2023.1226933
27. Sposini S., Caltabiano G., Hanyaloglu A.C., Miele R. Identification of transmembrane domains that regulate spatial arrangements and activity of prokineticin receptor 2 dimers. Mol Cell Endocrinol. 2015; 399:362-372. doi 10.1016/j.mce.2014.10.024
28. Teles M.G., Bianco S.D., Brito V.N., Trarbach E.B., Kuohung W., Xu S., Seminara S.B., Mendonca B.B., Kaiser U.B., Latronico A.C. AGPR54-activating mutation in a patient with central precocious puberty. N Engl J Med. 2008;358(7):709-715. doi 10.1056/NEJMoa073443
29. Valadares L.P., Meireles C.G., De Toledo I.P., de Oliveira R.S., de Castro L.C.G., Abreu A.P., Carroll R.S., Latronico A.C., Kaiser U.B., Guerra E.N.S., Lofrano-Porto A. MKRN3 mutations in central precocious puberty: a systematic review and meta-analysis. J Endocr Soc. 2019;3:979-995. doi 10.1210/js.2019-00041
30. Yarmolinskaya M.I., Ganbarli N.F., Aylamazyan E.K. Role of kisspeptine in regulation of reproductive function. Zhurnal Akusherstva i Zhenskikh Boleznej = J Obstetrics Women’s Diseases. 2016; LXV(6):4-18. doi 10.17816/JOWD6564-18 (in Russian)
31. Yuan G., Zhang X., Liu S., Chen T. Chinese familial central precocious puberty with hyperuricemia due to recurrent DLK1 mutation: case report and review of the literature. Mol Genet Genomic Med. 2022;10(12):e2087. doi 10.1002/mgg3.2087