От цитогенетики к протеогеномике: новые горизонты в исследовании анеуплоидий
https://doi.org/10.18699/vjgb-25-37
Аннотация
Анеуплоидией принято считать потерю или приобретение копии целой хромосомы или ее района. Уже на ранних стадиях развития она, как правило, приводит к фатальным последствиям, включая гибель организма и пороки/аномалии развития. Длительное время предполагалось, что именно нарушение баланса генов приводит к выраженным эффектам как на клеточном, так и на организменном уровне, негативно сказываясь на формировании организма. Было показано, что возникший вследствие анеуплоидии дисбаланс генов индуцирует протеотоксический и метаболический стресс в клетке, ее замедленную пролиферацию, нестабильность ее генома, оксидативный стресс и пр. Однако для некоторых организмов была описана толерантность к анеуплоидиям, которая даже могла способствовать возникновению у них адаптивных преимуществ (например, резистентность к антибиотикам у патогенных штаммов грибов). Вероятно, значимым фактором является сложность тканевой и органной организации особей конкретного вида. К анеуплоидии преимущественно более толерантны полиплоидные организмы и виды, относительно недавно прошедшие полногеномную дупликацию. Особое внимание в обзоре уделено рассмотрению анеуплоидий половых хромосом человека. Помимо первичных эффектов или цис-эффектов (изменение количества транскриптов генов, находящихся на анеуплоидной хромосоме), анеуплоидия может вызывать вторичные или транс-эффекты (изменение уровня экспрессии генов, расположенных на других хромосомах). Результаты исследований последних лет заставили по-новому взглянуть на влияние анеуплоидии на структурно-функциональную организацию генома, транскриптом и протеом как клетки, так и целого организма. Несмотря на то что при анеуплоидии уровень экспрессии для большинства генов коррелирует с измененным числом копий генов в клетке, были описаны случаи дозовой компенсации, при которой уровень транскриптов генов, расположенных на анеуплоидной хромосоме, оставался неизменным. В обзоре приводятся результаты последних исследований, посвященных изучению компенсаторных механизмов дозовой компенсации изменения количества продуктов генов на посттранскрипционных и пострансляционных уровнях, снижающих негативный эффект анеуплоидии на гомеостаз клетки, а также влиянию экстрахромосом на пространственную организацию генома, изменению паттернов экспрессии генов вследствие ее наличия. Кроме того, отдельно обсуждаются варианты сегментных анеуплоидий и изменения числа копий участков генома. Рассмотрено не только значение их состава, но также его локализация в хромосоме и в разных компартментах интерфазного ядра. Решение поднятых вопросов может внести большой вклад в совершенствование цитогеномной диагностики и в создание необходимой базы данных для корректной интерпретации выявленных случаев и сегментной анеуплоидии, и варьирующих по числу копий участков генома.
Об авторах
К. С. ЗадесенецРоссия
Новосибирск
Н. Б. Рубцов
Россия
Новосибирск
Список литературы
1. Auwerx C., Lepamets M., Sadler M.C., Patxot M., Stojanov M., Baud D., Mägi R.; Estonian Biobank Research Team; Porcu E., Reymond A., Kutalik Z. The individual and global impact of copynumber variants on complex human traits. Am J Hum Genet. 2022; 109(4):647-668. doi 10.1016/j.ajhg.2022.02.010
2. Baker D.E., Harrison N.J., Maltby E., Smith K., Moore H.D., Shaw P.J., Heath P.R., Holden H., Andrews P.W. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 2007;25(2):207-215. doi 10.1038/nbt1285
3. Balaton B.P., Cotton A.M., Brown C.J. Derivation of consensus inactivation status for X-linked genes from genome-wide studies. Biol Sex Differ. 2015;6:35. doi 10.1186/s13293-015-0053-7
4. Berglund A., Stochholm K., Gravholt C.H. The epidemiology of sex chromosome abnormalities. Am J Med Genet C Semin Med Genet. 2020;184(2):202-215. doi 10.1002/ajmg.c.31805
5. Birchler J.A. Aneuploidy in plants and flies: the origin of studies of genomic imbalance. Semin Cell Dev Biol. 2013;24(4):315-319. doi 10.1016/j.semcdb.2013.02.004
6. Birchler J.A., Veitia R.A. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci USA. 2012;109(37):14746-14753. doi 10.1073/pnas.1207726109
7. Birchler J.A., Bhadra U., Bhadra M.P., Auger D.L. Dosage-dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes, and quantitative traits. Dev Biol. 2001;234(2):275-288. doi 10.1006/dbio.2001.0262
8. Borel C., Ferreira P.G., Santoni F., Delaneau O., Fort A., Popadin K.Y., Garieri M., Falconnet E., Ribaux P., Guipponi M., Padioleau I., Carninci P., Dermitzakis E.T., Antonarakis S.E. Biased allelic expression in human primary fibroblast single cells. Am J Hum Genet. 2015;96(1):70-80. doi 10.1016/j.ajhg.2014.12.001
9. Bouwman A.C., Hulsegge I., Hawken R.J., Henshall J.M., Veerkamp R.F., Schokker D., Kamphuis C. Classifying aneuploidy in genotype intensity data using deep learning. J Anim Breed Genet. 2023;140(3):304-315. doi 10.1111/jbg.12760
10. Braun R., Ronquist S., Wangsa D., Chen H., Anthuber L., Gemoll T., Wangsa D., Koparde V., Hunn C., Habermann J.K., HeselmeyerHaddad K., Rajapakse I., Ried T. Single chromosome aneuploidy induces genome-wide perturbation of nuclear organization and gene expression. Neoplasia. 2019;21(4):401-412. doi 10.1016/j.neo. 2019.02.003
11. Burrell R.A., McClelland S.E., Endesfelder D., Groth P., Weller M.C., Shaikh N., Domingo E., Kanu N., Dewhurst S.M., Gronroos E., Chew S.K., Rowan A.J., Schenk A., Sheffer M., Howell M., Kschischo M., Behrens A., Helleday T., Bartek J., Tomlinson I.P., Swanton C. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494(7438):492-496. doi 10.1038/nature11935
12. Carrel L., Willard H.F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434(7031): 400-404. doi 10.1038/nature03479
13. Chester M., Gallagher J.P., Symonds V.V., Cruz da Silva A.V., Mavrodiev E.V., Leitch A.R., Soltis P.S., Soltis D.E. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci USA. 2012; 109(4):1176-1181. doi 10.1073/pnas.1112041109
14. Chikashige Y., Tsutsumi C., Okamasa K., Yamane M., Nakayama J., Niwa O., Haraguchi T., Hiraoka Y. Gene expression and distribution of Swi6 in partial aneuploids of the fission yeast Schizosaccharomyces pombe. Cell Struct Funct. 2007;32(2):149-161. doi 10.1247/ csf.07036
15. Chunduri N.K., Menges P., Zhang X., Wieland A., Gotsmann V.L., Mardin B.R., Buccitelli C., Korbel J.O., Willmund F., Kschischo M., Raeschle M., Storchova Z. Systems approaches identify the consequences of monosomy in somatic human cells. Nat Commun. 2021; 12:5576. doi 10.1038/s41467-021-25288-x
16. Colnaghi R., Carpenter G., Volker M., O’Driscoll M. The consequences of structural genomic alterations in humans: genomic disorders, genomic instability and cancer. Semin Cell Dev Biol. 2011;22(8): 875-885. doi 10.1016/j.semcdb.2011.07.010
17. Cremer M., Küpper K., Wagler B., Wizelman L., Hase J., Weiland Y., Kreja L., Diebold J., Speicher M.R., Cremer T. Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol. 2003;162(5):809-820. doi 10.1083/jcb.200304096
18. Cremer M., Brandstetter K., Maiser A., Rao S.S.P., Schmid V.J., Guirao-Ortiz M., Mitra N., Mamberti S., Klein K.N., Gilbert D.M., Leonhardt H., Cardoso M.C., Aiden E.L., Harz H., Cremer T. Cohesin depleted cells rebuild functional nuclear compartments after endomitosis. Nat Commun. 2020;11(1):6146. doi 10.1038/s41467020-19876-6
19. Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001;2(4): 292-301. doi 10.1038/35066075
20. Cremer T., Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol. 2010;2(3):a003889. doi 10.1101/cshperspect.a003889
21. Croft J.A., Bridger J.M., Boyle S., Perry P., Teague P., Bickmore W.A. Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol. 1999;145(6):1119-1131. doi 10.1083/jcb.145.6.1119
22. Dekker J., Rippe K., Dekker M., Kleckner N. Capturing chromosome conformation. Science. 2002;295(5558):1306-1311. doi 10.1126/science.1067799
23. Deng Q., Ramsköld D., Reinius B., Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014;343(6167):193-196. doi 10.1126/science.1245316
24. Deng X., Berletch J., Nguyen D., Disteche C.M. X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet. 2014;15:367-378. doi 10.1038/nrg3687
25. Duncan A.W., Hanlon Newell A.E., Smith L., Wilson E.M., Olson S.B., Thayer M.J., Strom S.C., Grompe M. Frequent aneuploidy among normal human hepatocytes. Gastroenterology. 2012;142(1):25-28. doi 10.1053/j.gastro.2011.10.029
26. Dürrbaum M., Storchová Z. Effects of aneuploidy on gene expression: implications for cancer. FEBS J. 2016;283(5):791-802. doi 10.1111/febs.13591
27. Edwards J.H., Harnden D.G., Cameron A.H., Crosse V.M., Wolff O.H. A new trisomic syndrome. Lancet. 1960;1(7128):787-790. doi 10.1016/s0140-6736(60)90675-9
28. Fournier R.E., Ruddle F.H. Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc Natl Acad Sci USA. 1977;74(1):319-323. doi 10.1073/pnas.74.1.319
29. Garieri M., Stamoulis G., Blanc X., Falconnet E., Ribaux P., Borel C., Santoni F., Antonarakis S.E. Extensive cellular heterogeneity of X inactivation revealed by single-cell allele-specific expression in human fibroblasts. Proc Natl Acad Sci USA. 2018;115(51):1301513020. doi 10.1073/pnas.1806811115
30. Gasch A.P., Hose J., Newton M.A., Sardi M., Yong M., Wang Z. Further support for aneuploidy tolerance in wild yeast and effects of dosage compensation on gene copy-number evolution. eLife. 2016;5:e14409. doi 10.7554/eLife.14409
31. Graham E.J., Vermeulen M., Vardarajan B., Bennett D., De Jager P., Pearse R.V. 2nd, Young-Pearse T.L., Mostafavi S. Somatic mosaicism of sex chromosomes in the blood and brain. Brain Res. 2019; 1721:146345. doi 10.1016/j.brainres.2019.146345
32. Gravholt C.H., Viuff M.H., Brun S., Stochholm K., Andersen N.H. Turner syndrome: mechanisms and management. Nat Rev Endocrinol. 2019;15:601-614. doi 10.1038/s41574-019-0224-4
33. Guo M., Birchler J.A. Trans-acting dosage effects on the expression of model gene systems in maize aneuploids. Science. 1994;266(5193): 1999-2002. doi 10.1126/science.266.5193.1999
34. Guttenbach M., Koschorz B., Bernthaler U., Grimm T., Schmid M. Sex chromosome loss and aging: in situ hybridization studies on human interphase nuclei. Am J Hum Genet. 1995;57(5):1143-1150
35. Hose J., Yong C.M., Sardi M., Wang Z., Newton M.A., Gasch A.P. Dosage compensation can buffer copy-number variation in wild yeast. eLife. 2015;4:e05462. doi 10.7554/eLife.05462
36. Hsieh T.S., Cattoglio C., Slobodyanyuk E., Hansen A.S., Rando O.J., Tjian R., Darzacq X. Resolving the 3D landscape of transcriptionlinked mammalian chromatin folding. Mol Cell. 2020;78(3):539553.e8. doi 10.1016/j.molcel.2020.03.002
37. Huettel B., Kreil D.P., Matzke M., Matzke A.J. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana. PLoS Genet. 2008;4(10):e1000226. doi 10.1371/journal.pgen.1000226
38. Jones K.J., Jones M.C., del Campo M. Smith’s Recognizable Patterns of Human Malformation. Elsevier Health Sciences, 2022
39. Kemeny S., Tatout C., Salaun G., Pebrel-Richard C., Goumy C., Ollier N., Maurin E., Pereira B., Vago P., Gouas L. Spatial organization of chromosome territories in the interphase nucleus of trisomy 21 cells. Chromosoma. 2018;127(2):247-259. doi 10.1007/s00412-017-0653-6
40. Knouse K.A., Wu J., Whittaker C.A., Amon A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci USA. 2014;111(37):13409-13414. doi 10.1073/pnas.1415287111
41. Krivega M., Stiefel C.M., Storchova Z. Consequences of chromosome gain: a new view on trisomy syndromes. Am J Hum Genet. 2022; 109(12):2126-2140. doi 10.1016/j.ajhg.2022.10.014
42. Kvitek D.J., Will J.L., Gasch A.P. Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet. 2008;4(10):e1000223. doi 10.1371/journal.pgen.1000223
43. Lachaud L., Bourgeois N., Kuk N., Morelle C., Crobu L., Merlin G., Bastien P., Pagès M., Sterkers Y. Constitutive mosaic aneuploidy is a unique genetic feature widespread in the Leishmania genus. Microbes Infect. 2014;16(1):61-66. doi 10.1016/j.micinf.2013.09.005
44. Lambuta R.A., Nanni L., Liu Y., Diaz-Miyar J., Iyer A., Tavernari D., Katanayeva N., Ciriello G., Oricchio E. Whole-genome doubling drives oncogenic loss of chromatin segregation. Nature. 2023; 615(7954):925-933. doi 10.1038/s41586-023-05794-2
45. Larsson A.J.M., Johnsson P., Hagemann-Jensen M., Hartmanis L., Faridani O.R., Reinius B., Segerstolpe Å., Rivera C.M., Ren B., Sandberg R. Genomic encoding of transcriptional burst kinetics. Nature. 2019;565(7738):251-254. doi 10.1038/s41586-018-0836-1
46. Larsson A.J.M., Ziegenhain C., Hagemann-Jensen M., Reinius B., Jacob T., Dalessandri T., Hendriks G.J., Kasper M., Sandberg R. Transcriptional bursts explain autosomal random monoallelic expression and affect allelic imbalance. PLoS Comput Biol. 2021; 17(3):e1008772. doi 10.1371/journal.pcbi.1008772
47. Leibowitz M.L., Papathanasiou S., Doerfler P.A., Blaine L.J., Sun L., Yao Y., Zhang C.Z., Weiss M.J., Pellman D. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat Genet. 2021;53(6):895-905. doi 10.1038/s41588-021-00838-7
48. Lejeune J., Gautier M., Turpin R. Study of somatic chromosomes from 9 mongoloid children. C R Hebd Seances Acad Sci. 1959;248(11): 1721-1722
49. Letourneau A., Santoni F., Bonilla X., Sailani M.R., Gonzalez D., Kind J., Chevalier C., Thurman R., Sandstrom R.S., Hibaoui Y., Garieri M., Popadin K., Falconnet E., Gagnebin M., Gehrig C., Vannier A., Guipponi M., Farinelli L., Robyr D., Migliavacca E., Borel C., Deutsch S., Feki A., Stamatoyannopoulos J.A., Herault Y., van Steensel B., Guigo R., Antonarakis S.E. Domains of genomewide gene expression dysregulation in Down’s syndrome. Nature. 2014;508(7496):345-350. doi 10.1038/nature13200
50. Li G., Fullwood M.J., Xu H., Mulawadi F.H., Velkov S., Vega V., Ariya ratne P.N., Mohamed Y.B., Ooi H.S., Tennakoon C., Wei C.L., Ruan Y., Sung W.K. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. 2010;11(2):R22. doi 10.1186/gb-2010-11-2-r22
51. Li R., Zhu J. Effects of aneuploidy on cell behaviour and function. Nat Rev Mol Cell Biol. 2022;23(4):250-265. doi 10.1038/s41580-021-00436-9
52. Liao W.W., Asri M., Ebler J., Doerr D., Haukness M., Hickey G., Lu S., … Garrison E., Marschall T., Hall I.M., Li H., Paten B. A draft human pangenome reference. Nature. 2023;617(7960):312-324. doi 10.1038/s41586-023-05896-x
53. Machiela M.J., Zhou W., Karlins E., Sampson J.N., Freedman N.D., Yang Q., Hicks B., … Rothman N., Tucker M., Dean M.C., Yeager M., Chanock S.J. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nat Commun. 2016;7:11843. doi 10.1038/ncomms11843
54. Mallick S., Li H., Lipson M., Mathieson I., Gymrek M., Racimo F., Zhao M., … Thangaraj K., Pääbo S., Kelso J., Patterson N., Reich D. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature. 2016;538(7624):201-206. doi 10.1038/nature18964
55. Mayer R., Brero A., von Hase J., Schroeder T., Cremer T., Dietzel S. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol. 2005;6:44. doi 10.1186/1471-2121-6-44
56. McConnell M.J., Moran J.V., Abyzov A., Akbarian S., Bae T., CortesCiriano I., Erwin J.A., … Kidd J.M., Park P.J., Pevsner J., Vaccarino F.M.; Brain Somatic Mosaicism Network. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science. 2017;356(6336):eaal1641. doi 10.1126/science.aal1641
57. Meaburn K.J., Misteli T. Cell biology: chromosome territories. Nature. 2007;445(7126):379-781. doi 10.1038/445379a
58. Meharena H.S., Marco A., Dileep V., Lockshin E.R., Akatsu G.Y., Mullahoo J., Watson L.A., Ko T., Guerin L.N., Abdurrob F., Rengarajan S., Papanastasiou M., Jaffe J.D., Tsai L.H. Down-syndromeinduced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell. 2022;29(1):116-130.e7. doi 10.1016/j.stem. 2021.12.002
59. Miga K.H. From complete genomes to pangenomes. Am J Hum Genet. 2024;111(7):1265-1268. doi 10.1016/j.ajhg.2024.05.012
60. Minks J., Robinson W.P., Brown C.J. A skewed view of X chromosome inactivation. J Clin Invest. 2008;118(1):20-23. doi 10.1172/JCI34470
61. Modi D., Berde P., Bhartiya D. Down syndrome: a study of chromosomal mosaicism. Reprod Biomed Online. 2003;6(4):499-503. doi 10.1016/s1472-6483(10)62174-8
62. Muenzner J., Trébulle P., Agostini F., Zauber H., Messner C.B., Steger M., Kilian C., Lau K., Barthel N., Lehmann A., Textoris-Taube K., Caudal E., Egger A.S., Amari F., De Chiara M., Demichev V., Gossmann T.I., Mülleder M., Liti G., Schacherer J., Selbach M., Berman J., Ralser M. Natural proteome diversity links aneuploidy tolerance to protein turnover. Nature. 2024;630(8015):149-157. doi 10.1038/s41586-024-07442-9
63. Nagano T., Lubling Y., Stevens T.J., Schoenfelder S., Yaffe E., Dean W., Laue E.D., Tanay A., Fraser P. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013;502(7469):59-64. doi 10.1038/nature12593
64. Nawata H., Kashino G., Tano K., Daino K., Shimada Y., Kugoh H., Oshimura M., Watanabe M. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes. PLoS One. 2011;6(9):e25319. doi 10.1371/journal.pone.0025319
65. Noormohammadi A., Calculli G., Gutierrez-Garcia R., Khodakarami A., Koyuncu S., Vilchez D. Mechanisms of protein homeostasis (proteostasis) maintain stem cell identity in mammalian pluripotent stem cells. Cell Mol Life Sci. 2018;75(2):275-290. doi 10.1007/s00018-017-2602-1
66. Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., … Zook J.M., Schatz M.C., Eichler E.E., Miga K.H., Phillippy A.M. The complete sequence of a human genome. Science. 2022;376(6588):44-53. doi 10.1126/science.abj6987
67. Oji A., Choubani L., Miura H., Hiratani I. Structure and dynamics of nuclear A/B compartments and subcompartments. Curr Opin Cell Biol. 2024;90:102406. doi 10.1016/j.ceb.2024.102406
68. Olson L.E., Richtsmeier J.T., Leszl J., Reeves R.H. A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science. 2004;306(5696):687-690. doi 10.1126/science.1098992
69. Patau K., Smith D.W., Therman E., Inhorn S.L., Wagner H.P. Multiple congenital anomaly caused by an extra autosome. Lancet. 1960; 1(7128):790-793. doi 10.1016/s0140-6736(60)90676-0
70. Pavelka N., Rancati G., Zhu J., Bradford W.D., Saraf A., Florens L., Sanderson B.W., Hattem G.L., Li R. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast.
71. Nature. 2010;468(7321):321-325. doi 10.1038/nature09529
72. Pavlicek J., Soucek O., Vrtel R., Klaskova E., Hana V., Stara V., Adamova K., Fürst T., Hana V., Jr., Kapralova S., Prochazka M., Snajderova M., Tomaskova H., Tüdös Z., Vrbicka D., Vrtel P., Zapletalova J., Tauber Z., Lebl J. Karyotyping of lymphocytes and epithelial cells of distinct embryonic origin does not help to predict the Turner syndrome features. Horm Res Paediatr. 2022;95(5):465-475. doi 10.1159/000525823
73. Pinkel D., Segraves R., Sudar D., Clark S., Poole I., Kowbel D., Collins C., Kuo W.L., Chen C., Zhai Y., Dairkee S.H., Ljung B.M., Gray J.W., Albertson D.G. High resolution analysis of DNA copy number variation using comparative genomic hybridization to micro arrays. Nat Genet. 1998;20(2):207-211. doi 10.1038/2524
74. Pires J.C., Conant G.C. Robust yet fragile: expression noise, protein misfolding, and gene dosage in the evolution of genomes. Annu Rev Genet. 2016;50:113-131. doi 10.1146/annurev-genet-120215- 035400
75. Ramsköld D., Hendriks G.J., Larsson A.J.M., Mayr J.V., Ziegenhain C., Hagemann-Jensen M., Hartmanis L., Sandberg R. Single-cell new RNA sequencing reveals principles of transcription at the resolution of individual bursts. Nat Cell Biol. 2024;26(10):1725-1733. doi 10.1038/s41556-024-01486-9
76. Rana B., Lambrese K., Mendola R., Xu J., Garrisi J., Miller K., Marin D., Treff N.R. Identifying parental and cell-division origins of aneuploidy in the human blastocyst. Am J Hum Genet. 2023;110(4): 565-574. doi 10.1016/j.ajhg.2023.03.003
77. Razin S.V., Ulianov S.V. Genome-directed cell nucleus assembly. Biology. 2022;11(5):708. doi 10.3390/biology11050708
78. Raznahan A., Parikshak N.N., Chandran V., Blumenthal J.D., Clasen L.S., Alexander-Bloch A.F., Zinn A.R., Wangsa D., Wise J., Murphy D.G.M., Bolton P.F., Ried T., Ross J., Giedd J.N., Geschwind D.H. Sex-chromosome dosage effects on gene expression in humans. Proc Natl Acad Sci USA. 2018;115(28):7398-7403. doi 10.1073/pnas.1802889115
79. Rehen S.K., Yung Y.C., McCreight M.P., Kaushal D., Yang A.H., Almeida B.S., Kingsbury M.A., Cabral K.M., McConnell M.J., Anliker B., Fontanoz M., Chun J. Constitutional aneuploidy in the normal human brain. J Neurosci. 2005;25(9):2176-2180. doi 10.1523/JNEUROSCI.4560-04.2005
80. Reinius B., Sandberg R. Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat Rev Genet. 2015;16(11):653-664. doi 10.1038/nrg3888
81. Rustchenko E. Chromosome instability in Candida albicans. FEMS Yeast Res. 2007;7(1):2-11. doi 10.1111/j.1567-1364.2006.00150.x
82. Rutledge S.D., Cimini D. Consequences of aneuploidy in sickness and in health. Curr Opin Cell Biol. 2016;40:41-46. doi 10.1016/j.ceb.2016.02.003
83. Santaguida S., Vasile E., White E., Amon A. Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev. 2015;29(19): 2010-2021. doi 10.1101/gad.269118.115
84. Santoni F.A., Stamoulis G., Garieri M., Falconnet E., Ribaux P., Borel C., Antonarakis S.E. Detection of imprinted genes by single-cell allelespecific gene expression. Am J Hum Genet. 2017;100(3):444-453. doi 10.1016/j.ajhg.2017.01.028
85. Shah P.P., Keough K.C., Gjoni K., Santini G.T., Abdill R.J., Wickramasinghe N.M., Dundes C.E., Karnay A., Chen A., Salomon R.E.A., Walsh P.J., Nguyen S.C., Whalen S., Joyce E.F., Loh K.M., Dubois N., Pollard K.S., Jain R. An atlas of lamina-associated chromatin across twelve human cell types reveals an intermediate chromatin subtype. Genome Biol. 2023;24(1):16. doi 10.1186/s13059-023-02849-5
86. Shao Y., Lu N., Wu Z., Cai C., Wang S., Zhang L.-L., Zhou F., Xiao S., Liu L., Zeng X., Zheng H., Yang C., Zhao Z., Zhao G., Zhou J.- Q., Xue X., Qin Z. Creating a functional single-chromosome yeast. Nature. 2018;560(7718):331-335. doi 10.1038/s41586-018-0382-x
87. Sheltzer J.M., Torres E.M., Dunham M.J., Amon A. Transcriptional consequences of aneuploidy. Proc Natl Acad Sci USA. 2012; 109(31):12644-12649. doi 10.1073/pnas.1209227109
88. Solovei I., Wang A.S., Thanisch K., Schmidt C.S., Krebs S., Zwerger M., Cohen T.V., Devys D., Foisner R., Peichl L., Herrmann H., Blum H., Engelkamp D., Stewart C.L., Leonhardt H., Joffe B. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell. 2013;152(3):584-598. doi 10.1016/j.cell.2013.01.009
89. Stamoulis G., Garieri M., Makrythanasis P., Letourneau A., Guipponi M., Panousis N., Sloan-Béna F., Falconnet E., Ribaux P., Borel C., Santoni F., Antonarakis S.E. Single cell transcriptome in aneuploidies reveals mechanisms of gene dosage imbalance. Nat Commun. 2019;10:4495. doi 10.1038/s41467-019-12273-8
90. Starostik M.R., Sosina O.A., McCoy R.C. Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism. Genome Res. 2020;30(6):814-825. doi 10.1101/gr.262774.120
91. Sterkers Y., Lachaud L., Crobu L., Bastien P., Pagès M. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell Microbiol. 2011;13(2):274-283. doi 10.1111/j.1462-5822.2010.01534.x
92. Sterkers Y., Lachaud L., Bourgeois N., Crobu L., Bastien P., Pagès M. Novel insights into genome plasticity in eukaryotes: mosaic aneuploidy in Leishmania. Mol Microbiol. 2012;86(1):15-23. doi 10.1111/j.1365-2958.2012.08185.x
93. Stingele S., Stoehr G., Peplowska K., Cox J., Mann M., Storchova Z. Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol Syst Biol. 2012;8:608. doi 10.1038/msb.2012.40
94. Storchová Z. Cells cope with altered chromosome numbers by enhancing protein breakdown. Nature. 2024;630(8015):41-43. doi 10.1038/d41586-024-01360-6
95. Sullivan K.D., Lewis H.C., Hill A.A., Pandey A., Jackson L.P., Cabral J.M., Smith K.P., Liggett L.A., Gomez E.B., Galbraith M.D., DeGregori J., Espinosa J.M. Trisomy 21 consistently activates the interferon response. eLife. 2016;5:e16220. doi 10.7554/eLife.16220
96. Tallaksen H.B.L., Johannsen E.B., Just J., Viuff M.H., Gravholt C.H., Skakkebæk A. The multi-omic landscape of sex chromosome abnormalities: current status and future directions. Endocr Connect. 2023; 12(9):e230011. doi 10.1530/EC-23-0011
97. Tanabe H., Müller S., Neusser M., von Hase J., Calcagno E., Cremer M., Solovei I., Cremer C., Cremer T. Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA. 2002;99(7):4424-4429. doi 10.1073/pnas.072618599
98. Tang Y.C., Amon A. Gene copy-number alterations: a cost-benefit analysis. Cell. 2013;152(3):394-405. doi 10.1016/j.cell.2012.11.043
99. Taylor A.M.R., Rothblum-Oviatt C., Ellis N.A., Hickson I.D., Meyer S., Crawford T.O., Smogorzewska A., Pietrucha B., Weemaes C., Stewart G.S. Chromosome instability syndromes. Nat Rev Dis Primers. 2019;5(1):64. doi 10.1038/s41572-019-0113-0
100. The 1000 Genomes Project Consortium; Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., Abecasis G.R. A global reference for human genetic variation. Nature. 2015;526(7571):68-74. doi 10.1038/nature15393
101. Thomas R., Marks D.H., Chin Y., Benezra R. Whole chromosome loss and associated breakage–fusion–bridge cycles transform mouse tetraploid cells. EMBO J. 2018;37(2):201-218. doi 10.15252/embj.201797630
102. Thompson S.L., Bakhoum S.F., Compton D.A. Mechanisms of chromosomal instability. Curr Biol. 2010;20(6):R285-R295. doi 10.1016/j.cub.2010.01.034
103. Torres E.M. Consequences of gaining an extra chromosome. Chromosome Res. 2023;31(3):24. doi 10.1007/s10577-023-09732-w
104. Torres E.M., Sokolsky T., Tucker C.M., Chan L.Y., Boselli M., Dunham M.J., Amon A. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science. 2007;317(5840):916-924. doi 10.1126/science.1142210
105. Truong M.A., Cané-Gasull P., Lens S.M.A. Modeling specific aneuploidies: from karyotype manipulations to biological insights. Chromosome Res. 2023;31(3):25. doi 10.1007/s10577-023-09735-7
106. van Berkum N.L., Lieberman-Aiden E., Williams L., Imakaev M., Gnirke A., Mirny L.A., Dekker J., Lander E.S. Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp. 2010;39:1869. doi 10.3791/1869
107. van Steensel B., Belmont A.S. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell. 2017;169(5):780-791. doi 10.1016/j.cell.2017.04.022
108. Veitia R.A., Potier M.C. Gene dosage imbalances: action, reaction, and models. Trends Biochem Sci. 2015;40(6):309-317. doi 10.1016/j.tibs.2015.03.011
109. Veitia R.A., Bottani S., Birchler J.A. Gene dosage effects: nonlinearities, genetic interactions, and dosage compensation. Trends Genet. 2013;29(7):385-393. doi 10.1016/j.tig.2013.04.004
110. Vernot B., Tucci S., Kelso J., Schraiber J.G., Wolf A.B., Gittelman R.M., Dannemann M., Grote S., McCoy R.C., Norton H., Scheinfeldt L.B., Merriwether D.A., Koki G., Friedlaender J.S., Wakefield J., Pääbo S., Akey J.M. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science. 2016;352(6282):235-239. doi 10.1126/science.aad9416
111. Wang S., Leng L., Wang Q., Gu Y., Li J., An Y., Deng Q., Xie P., Cheng C., Chen X., Zhou Q., Lu J., Chen F., Liu L., Yang H., Wang J., Xu X., Hou Y., Gong F., Hu L., Lu G., Shang Z., Lin G. A single-cell transcriptome atlas of human euploid and aneuploid blastocysts. Nat Genet. 2024;56(7):1468-1481. doi 10.1038/s41588-024-01788-6
112. Wang Y., Qu Z., Fang Y., Chen Y., Peng J., Song J., Li J., Shi J., Zhou J.- Q., Zhao Y. Chromosome territory reorganization through artificial chromosome fusion is compatible with cell fate determination and mouse development. Cell Discov. 2023;9(1):11. doi 10.1038/s41421-022-00511-1
113. Werner J.M., Hover J., Gillis J. Population variability in X-chromosome inactivation across 10 mammalian species. Nat Commun. 2024;15(1):8991. doi 10.1038/s41467-024-53449-1
114. Williams B.R., Amon A. Aneuploidy: cancer’s fatal flaw? Cancer Res. 2009;69(13):5289-5291. doi 10.1158/0008-5472.CAN-09-0944
115. Williams B.R., Prabhu V.R., Hunter K.E., Glazier C.M., Whittaker C.A., Housman D.E., Amon A. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science. 2008; 322(5902):703-709. doi 10.1126/science.1160058
116. Xiao R., Xu D., Zhang M., Chen Z., Cheng L., Du S., Lu M., Zhou T., Li R., Bai F., Huang Y. Aneuploid embryonic stem cells drive teratoma metastasis. Nat Commun. 2024;15(1):8883. doi 10.1038/s41467-024-53288-0
117. Yurov Y.B., Vorsanova S.G., Iourov I.Y., Demidova I.A., Beresheva A.K., Kravetz V.S., Monakhov V.V., Kolotii A.D., VoinovaUlas V.Y., Gorbachevskaya N.L. Unexplained autism is frequently associated with low‐level mosaic aneuploidy. J Med Genet. 2007; 44(8):521-525. doi 10.1136/jmg.2007.049312
118. Zadesenets K.S., Rubtsov N.B. B chromosomes in free-living flatworms of the genus Macrostomum (Platyhelminthes, Macrostomorpha). Int J Mol Sci. 2021;22(24):13617. doi 10.3390/ijms222413617
119. Zadesenets K.S., Vizoso D.B., Schlatter A., Konopatskaia I.D., Bere zikov E., Schärer L., Rubtsov N.B. Evidence for karyotype polymorphism in the free-living flatworm, Macrostomum lignano, a model organism for evolutionary and developmental biology. PLoS One. 2016;11(10):e0164915. doi 10.1371/journal.pone.0164915
120. Zadesenets K.S., Ershov N.I., Berezikov E., Rubtsov N.B. Chromosome evolution in the free-living flatworms: first evidence of intrachromosomal rearrangements in karyotype evolution of Macrostomum lignano (Platyhelminthes, Macrostomida). Genes (Basel). 2017a;8(11):298. doi 10.3390/genes8110298
121. Zadesenets K.S., Schärer L., Rubtsov N.B. New insights into the karyotype evolution of the free-living flatworm Macrostomum lignano (Platyhelminthes, Turbellaria). Sci Rep. 2017b;7(1):6066. doi 10.1038/s41598-017-06498-0
122. Zadesenets K.S., Jetybayev I.Y., Schärer L., Rubtsov N.B. Genome and karyotype reorganization after whole genome duplication in freeliving flatworms of the genus Macrostomum. Int J Mol Sci. 2020; 21(2):680. doi 10.3390/ijms21020680
123. Zadesenets K.S., Ershov N.I., Bondar N.P., Rubtsov N.B. Unraveling the unusual subgenomic organization in the neopolyploid free-living flatworm Macrostomum lignano. Mol Biol Evol. 2023;40(12): msad250. doi 10.1093/molbev/msad250
124. Zhai F., Kong S., Song S., Guo Q., Ding L., Zhang J., Wang N., Kuo Y., Guan S., Yuan P., Yan L., Yan Z., Qiao J. Human embryos harbor complex mosaicism with broad presence of aneuploid cells during Conflict of interest. The authors declare no conflict of interest. early development. Cell Discov. 2024;10(1):98. doi 10.1038/ s41421-024-00719-3
125. Zhang F., Gu W., Hurles M.E., Lupski J.R. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451-481. doi 10.1146/annurev.genom.9.081307.164217
126. Zhang X.M., Yan M., Yang Z., Xiang H., Tang W., Cai X., Wu Q., Liu X., Pei G., Li J. Creation of artificial karyotypes in mice reveals robustness of genome organization. Cell Res. 2022;32(11):10261029. doi 10.1038/s41422-022-00722-x
127. Zhegalova I.V., Vasiluev P.A., Flyamer I.M., Shtompel A.S., Glazyrina E., Shilova N., Minzhenkova M., Markova Z., Petrova N.V., Dashinimaev E.B., Razin S.V., Ulianov S.V. Trisomies reorganize human 3D genome. Int J Mol Sci. 2023;24(22):6044. doi 10.3390/ijms242216044