Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Anthocyanins and phenolic compounds in colored wheat grain

https://doi.org/10.18699/vjgb-25-42

Abstract

Wheat is an extremely important and preferred source of human nutrition in many regions of the world. The production of biofortified colored-grain wheat varieties, which are known to contain a range of biologically active compounds, including anthocyanins, phenolic compounds, vitamins and minerals, reflects a worldwide trend toward increasing dietary diversity and improving diet quality through the development and introduction of diverse functional foods. The present work describes the genetic systems that regulate the biosynthesis and accumulation of anthocyanins in the pericarp and aleurone layer, the presence of which imparts purple, blue and black grain color. The review is devoted to the systematization of available information on the peculiarities of qualitative and quantitative content of anthocyanins, soluble and insoluble phenolic acids in wheat grain of different color, as well as on indicators of antioxidant activity of alcoholic extracts of grain depending on the content of anthocyanins and phenolic compounds. A huge number of studies have confirmed that these compounds are antioxidants, have anti-inflammatory activity and their consumption makes an important contribution to the prevention of a number of socially significant human diseases. Consumption of colored cereal grain products may contribute to an additional enrichment of bioactive compounds in human diet along with the usual sources of antioxidants. Special attention in the review is paid to the description of achievements of Russia’s breeders in developing promising varieties and lines with colored grain, which will be a key factor in expanding the opportunities of the domestic and international grain market.

About the Authors

E. V. Chumanova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



T. T. Efremova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



K. V. Sobolev
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Agrarian University
Russian Federation

Novosibirsk



E. A. Kosyaeva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Agrarian University
Russian Federation

Novosibirsk



References

1. Abdel­Aal E.S.M., Hucl P. Composition and stability of anthocyanins in blue­grained wheat. J. Agric. Food Chem. 2003;51(8):2174­2180. doi 10.1021/jf021043x

2. Abdel­Aal E.S.M., Young J.C., Rabalski I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006;54(13):4696­4704. doi 10.1021/jf0606609

3. Abdel­Aal E.S.M., Hucl P., Shipp J., Rabalski I. Compositional differen ces in anthocyanins from blue­ and purple­grained spring wheat grown in four environments in central Saskatchewan. Cereal Chem. 2016;93(1):32­38. doi 10.1094/cchem­03­15­0058­R

4. Abdel­Aal E.S.M., Hucl P., Rabalski I. Compositional and antioxidant properties of anthocyanin­rich products prepared from purple wheat. Food Chem. 2018;254:13­19. doi 10.1016/j.foodchem.2018.01.170

5. Arbuzova V.S., Maystrenko O.I., Popova O.M. Development of nearisogenic lines of the common wheat cultivar ‘Saratovskaya 29’. Cereal Res. Commun. 1998;26:39­46. doi 10.1007/BF03543466

6. Arbuzova V.S., Badaeva E.D., Efremova T.T., Osadchaia T.S., Trubacheva N.V., Dobrovol’skaia O.B. A cytogenetic study of the bluegrain line of the common wheat cultivar Saratovskaya 29. Russ. J. Genet. 2012;48(8):785­791. doi 10.1134/S102279541205002X

7. Bartl P., Albreht A., Skrt M., Tremlová B., Oš͗ ádalová M., Šmejkal K., Vovk I., Ulrih N.P. Anthocyanins in purple and blue wheat grains and in resulting bread: quantity, composition, and thermal stability. Int. J. Food Sci. Nutr. 2015;66(5):514­519. doi 10.3109/09637486.2015.1056108

8. Beleggia R., Ficco D.B.M., Pecorella I., De Vita P., Nigro F.M., Giovanniello V., Colecchia S.A. Effect of sowing date on bioactive compounds and grain morphology of three pigmented cereal species. Agronomy. 2021;11(3):591. doi 10.3390/agronomy11030591

9. Bueno­Herrera M., Pérez­Magariño S. Validation of an extraction method for the quantification of soluble free and insoluble bound phenolic compounds in wheat by HPLC­DAD. J. Cereal Sci. 2020; 93:102984. doi 10.1016/j.jcs.2020.102984

10. Burešová V., Kopecký D., Bartoš J., Martinek P., Watanabe N., Vyh­ nánek T., Doležel J. Variation in genome composition of blue-aleurone wheat. Theor. Appl. Genet. 2015;128(2):273­282. doi 10.1007/s00122­014­2427­3

11. Bustos D.V., Riegel R., Calderini D.F. Anthocyanin content of grains in purple wheat is affected by grain position, assimilate availability and agronomic management. J. Cereal Sci. 2012;55(3):257­264. doi 10.1016/j.jcs.2011.12.001

12. Dhua S., Kumar K., Kumar Y., Singh L., Sharanagat V.S. Composition, characteristics and health promising prospects of black wheat: a review. Trends Food Sci. Technol. 2021;112:780­794. doi 10.1016/j.tifs.2021.04.037

13. Eticha F., Grausgruber H., Siebenhandl­Ehn S., Berghofer E. Some agronomic and chemical traits of blue aleurone and purple pericarp wheat (Triticum L.). J. Agric. Sci. Technol. 2011;1:48­58

14. Fan X., Xu Z., Wang F., Feng B., Zhou Q., Cao J., Ji G., Yu Q., Liu X., Liao S., Wang T. Identification of colored wheat genotypes with suitable quality and yield traits in response to low nitrogen input. PLoS One. 2020;15(4):0229535. doi 10.1371/journal.pone.0229535

15. Ficco D.B.M., De Simone V., Colecchia S.A., Pecorella I., Platani C., Nigro F., Finocchiaro F., Papa R., De Vita P. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. J. Agric. Food Chem. 2014;62(34):8686­8695. doi 10.1021/jf5003683

16. Francavilla A., Joye I.J. Anthocyanins in whole grain cereals and their potential effect on health. Nutrients. 2020;12(10):2922. doi 10.3390/nu12102922

17. Gamel T.H., Muhammad S., Saeed G., Ali R., Abdel­Aal E.S.M. Purple wheat: food development, anthocyanin stability, and potential health benefits. Foods. 2023;12(7):1358. doi 10.3390/foods12071358

18. Garg M., Chawla M., Chunduri V., Kumar R., Sharma S., Sharma N.K., Kaur N., Kumar A., Mundey J.K., Saini M.K., Singh S.P. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016;71:138­144. doi 10.1016/j.jcs.2016.08.004

19. Garg M., Kaur S., Sharma A., Kumari A., Tiwari V., Sharma S., Kapoor P., Sheoran B., Goyal A., Krishania M. Rising demand for healthy foods-anthocyanin biofortified colored wheat is a new research trend. Front. Nutr. 2022;9:878221. doi 10.3389/fnut.2022.878221

20. Geyik Ö.G., Tekin-Cakmak Z.H., Shamanin V.P., Karasu S., Pototskaya I.V., Shepelev S.S., Chursin A.S., Morgounov A.I., Yaman M., Sagdic O., Koksel H. Effects of phenolic compounds of colored wheats on colorectal cancer cell lines. Qual. Assur. Saf. Crop. Foods. 2023;15(4):21­31. doi 10.15586/qas.v15I4.1354

21. Gordeeva E.I., Shoeva O.Y., Khlestkina E.K. Marker­assisted development of bread wheat near­isogenic lines carrying various combinations of purple pericarp (Pp) alleles. Euphytica. 2015;203(2): 469­476. doi 10.1007/S10681­014­1317­8/FIGURES/2

22. Gordeeva E., Shamanin V., Shoeva O., Kukoeva T., Morgounov A., Khlestkina E. The strategy for marker­assisted breeding of anthocyanin­rich spring bread wheat (Triticum aestivum L.) cultivars in Western Siberia. Agronomy. 2020;10(10):1603. doi 10.3390/agronomy10101603

23. Gordeeva E., Shoeva O., Mursalimov S., Adonina I., Khlestkina E. Fine points of marker­assisted pyramiding of anthocyanin biosynthesis regulatory genes for the creation of black­grained bread wheat (Triticum aestivum L.) lines. Agronomy. 2022;12(12):2934. doi 10.3390/agronomy12122934

24. Granda L., Rosero A., Benešová K., Pluháčková H., Neuwirthová J., Cerkal R. Content of selected vitamins and antioxidants in colored and nonpigmented varieties of quinoa, barley, and wheat grains. J. Food Sci. 2018;83(10):2439­2447. doi 10.1111/1750­3841.14334

25. Himi E., Maekawa M., Miura H., Noda K. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor. Appl. Genet. 2011;122(8):1561­1576. doi 10.1007/s00122­011­1555­2

26. Hosseinian F.S., Li W., Beta T. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 2008;109(4):916­924. doi 10.1016/j.foodchem.2007.12.083

27. Hu C., Cai Y.Z., Li W., Corke H., Kitts D.D. Anthocyanin characteri zation and bioactivity assessment of a dark blue grained wheat (Triticum aestivum L. cv. Hedong Wumai) extract. Food Chem. 2007; 104(3):955­961. doi 10.1016/j.foodchem.2006.12.064

28. Iannucci A., Suriano S., Cancellaro S., Trono D. Anthocyanin profile and main antioxidants in pigmented wheat grains and related millstream fractions. Cereal Chem. 2022;99(6):1282­1295. doi 10.1002/cche.10591

29. Jiang W., Liu T., Nan W., Jeewani D.C., Niu Y., Li C., Wang Y., Shi X., Wang C., Wang J., Li Y., Gao X., Wang Z. Two transcription factors TaPpm1 and TaPpb1 co­regulate anthocyanin biosynthesis in purple pericarps of wheat. J. Exp. Bot. 2018;69(10):2555­2567. doi 10.1093/jxb/ery101

30. Jiang Y., Qi Z., Li J., Gao J., Xie Y., Henry C.J., Zhou W. Role of su­ perfine grinding in purple-whole-wheat flour. Part I: Impacts of size reduction on anthocyanin profile, physicochemical and antioxidant properties. LWT. 2024;197:115940. doi 10.1016/j.lwt.2024.115940

31. Khlestkina E.K., Röder M.S., Börner A. Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica. 2010;171(1):65­69. doi 10.1007/s10681­009­9994­4

32. Khlestkina E.K., Usenko N.I., Gordeeva E.I., Stabrovskaya O.I., Sharfunova I.B., Otmakhova Y.S. Evaluation of wheat products with high flavonoid content: justification of importance of marker-assisted development and production of flavonoid-rich wheat cultivars. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(5):545­553. doi 10.18699/VJ17.25­o (in Russian)

33. Koksel H., Cetiner B., Shamanin V.P., Tekin­Cakmak Z.H., Pototskaya I.V., Kahraman K., Sagdic O., Morgounov A.I. Quality, nutritional properties, and glycemic index of colored whole wheat breads. Foods. 2023;12(18):3376. doi 10.3390/foods12183376

34. Kumari A., Sharma S., Sharma N., Chunduri V., Kapoor P., Kaur S., Goyal A., Garg M. Influence of biofortified colored wheats (purple, blue, black) on physicochemical, antioxidant and sensory characteristics of chapatti (indian flatbread). Molecules. 2020;25(21):5071. doi 10.3390/molecules25215071

35. Laddomada B., Caretto S., Mita G. Wheat bran phenolic acids: bioavailability and stability in whole wheat­based foods. Molecules. 2015;20(9):15666­15685. doi 10.3390/molecules200915666

36. Laddomada B., Durante M., Mangini G., D’Amico L., Lenucci M.S., Simeone R., Piarulli L., Mita G., Blanco A. Genetic variation for phenolic acids concentration and composition in a tetraploid wheat (Triticum turgidum L.) collection. Genet. Resour. Crop Evol. 2017; 64(3):587­597. doi 10.1007/s10722­016­0386­z

37. Li N., Li S., Zhang K., Chen W., Zhang B., Wang D., Liu D., Liu B., Zhang H. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum. PLoS One. 2017;12(7):0181116. doi 10.1371/journal.pone.0181116

38. Li Y., Ma D., Sun D., Wang C., Zhang J., Xie Y., Guo T. Total phe­ nolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. Crop J. 2015;3(4):328­334. doi 10.1016/j.cj.2015.04.004

39. Liu X., Zhang M., Jiang X., Li H., Jia Z., Hao M., Jiang B., Huang L., Ning S., Yuan Z., Chen Xuejiao, Chen Xue, Liu D., Liu B., Zhang L. TbMYC4A is a candidate gene controlling the blue aleurone trait in a wheat­triticum boeoticum substitution line. Front. Plant Sci. 2021; 12:762265. doi 10.3389/fpls.2021.762265

40. Liu Xin, Feng Z., Liang D., Zhang M., Liu Xiaojuan, Hao M., Liu D., Ning S., Yuan Z., Jiang B., Chen Xuejiao, Chen Xue, Zhang L. Development, identification, and characterization of blue-grained wheat – Triticum boeoticum substitution lines. J. Appl. Genet. 2020; 61(2):169­177. doi 10.1007/s13353­020­00553­9

41. Ma D., Li Y., Zhang J., Wang C., Qin H., Ding H., Xie Y., Guo T. Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis­related genes in developing grains of white, purple, and red wheat. Front. Plant Sci. 2016;7:185202. doi 10.3389/fpls.2016.00528

42. Ma D., Wang C., Feng J., Xu B. Wheat grain phenolics: a review on composition, bioactivity, and influencing factors. J. Sci. Food Agric. 2021;101(15):6167­6185. doi 10.1002/JSFA.11428

43. Menga V., Giovanniello V., Savino M., Gallo A., Colecchia S.A., De Simone V., Zingale S., Ficco D.B.M. Comparative analysis of qualitative and bioactive compounds of whole and refined flours in durum wheat grains with different year of release and yield potential. Plants. 2023;12(6):1350. doi 10.3390/plants12061350

44. Mohammadi N., Farrell M., O’Sullivan L., Langan A., Franchin M., Azevedo L., Granato D. Effectiveness of anthocyanin-containing foods and nutraceuticals in mitigating oxidative stress, inflammation, and cardiovascular health­related biomarkers: a systematic review of animal and human interventions. Food Funct. 2024;15(7):32743299. doi 10.1039/d3fo04579j

45. Paznocht L., Kotíková Z., Burešová B., Lachman J., Martinek P. Phenolic acids in kernels of different coloured-grain wheat genotypes. Plant Soil Environ. 2020;66(2):57­64. doi 10.17221/380/2019­PSE

46. Pototskaya I.V., Nardin D.S., Yurkinson A.V., Pototskaya A.A., Shamanin V.P. Prospects of “colored wheat” for functional nutrition. In: Abstracts from the Int. conf. “Vavilov Readings – 2022”. Nov. 22–25, 2022. Saratov, Russia, 2022;190­194 (in Russian)

47. Razgonova M.P., Zakharenko A.M., Gordeeva E.I., Shoeva O.Y., Antonova E.V., Pikula K.S., Koval L.A., Khlestkina E.K., Golokhvast K.S. Phytochemical analysis of phenolics, sterols, and terpenes in colored wheat grains by liquid chromatography with tandem mass spectrometry. Molecules. 2021;26(18):5580. doi 10.3390/molecules26185580

48. Rubets V.S., Voronchikhina I.N., Igonin V.N., Sidorenko V.S., Voronchikhin V.V. Characteristics of violet­green variety of spring soft wheat in the conditions of the central region of the Non­Chernozem zone of Russia. Mezhdunarodnyi Sel’skokhoziaystvennyi Zhur nal = Int. Agric. J. 2022;5:525­529. doi 10.55186/25876740_2022_65_ 5_525 (in Russian)

49. Sahu R., Mandal S., Das P., Ashraf G.J., Dua T.K., Paul P., Nandi G., Khanra R. The bioavailability, health advantages, extraction method, and distribution of free and bound phenolics of rice, wheat, and maize: a review. Food Chem. Adv. 2023;3:100484. doi 10.1016/j.focha.2023.100484

50. Saini P., Kumar N., Kumar S., Panghal A., Attkan A.K. Analysis of engineering properties, milling characteristics, antioxidant potential, and nutritional benefits of purple wheat and its bran. Food Bioeng. 2023;2(4):406­419. doi 10.1002/fbe2.12073

51. Shamanin V.P., Tekin­Cakmak Z.H., Gordeeva E.I., Karasu S., Pototskaya I., Chursin A.S., Pozherukova V.E., Ozulku G., Morgounov A.I., Sagdic O., Koksel H. Antioxidant capacity and profiles of phenolic acids in various genotypes of purple wheat. Foods. 2022; 11(16):2515. doi 10.3390/foods11162515

52. Shamanin V.P., Tekin­Cakmak Z.H., Karasu S., Pototskaya I.V., Gordee va E.I., Verner A.O., Morgounov A.I., Yaman M., Sagdic O., Koksel H. Antioxidant activity, anthocyanin profile, and mineral compositions of colored wheats. Qual. Assur. Saf. Crop. Foods. 2024;16(1):98­107. doi 10.15586/qas.v16I1.1414

53. Sharma A., Yadav M., Tiwari A., Ali U., Krishania M., Bala M., Sharma P., Goudar G., Roy J.K., Navik U., Garg M. A comparative study of colored wheat lines across laboratories for validation of their phytochemicals and antioxidant activity. J. Cereal Sci. 2023;112: 103719. doi 10.1016/j.jcs.2023.103719

54. Sharma N., Tiwari V., Vats S., Kumari A., Chunduri V., Kaur S., Kapoor P., Garg M. Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat-grass juice against common human pathogens. Molecules. 2020;25(24):5785. doi 10.3390/molecules25245785

55. Sharma S., Chunduri V., Kumar A., Kumar R., Khare P., Kondepudi K.K., Bishnoi M., Garg M. Anthocyanin bio-fortified colored wheat: nutritional and functional characterization. PLoS One. 2018; 13(4):0194367. doi 10.1371/journal.pone.0194367

56. Shen Y., Shen J., Dawadondup, Zhuang L., Wang Y., Pu J., Feng Y., Chu C., Wang X., Qi Z. Physical localization of a novel blue­grained gene derived from Thinopyrum bessarabicum. Mol. Breed. 2013; 31(1):195­204. doi 10.1007/s11032­012­9783­y

57. Shoeva O.Y., Gordeeva E.I., Khlestkina E.K. The regulation of anthocyanin synthesis in the wheat pericarp. Molecules. 2014;19(12): 20266­20279. doi 10.3390/molecules191220266

58. Siebenhandl S., Grausgruber H., Pellegrini N., Del Rio D., Fogliano V., Pernice R., Berghofer E. Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J. Agric. Food Chem. 2007;55(21):8541­8547. doi 10.1021/jf072021j

59. Singh K., Ghai M., Garg M., Chhuneja P., Kaur P., Schnurbusch T., Keller B., Dhaliwal H.S. An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. Theor. Appl. Genet. 2007;115:301­312. doi 10.1007/s00122­007­0543­z

60. Tereshchenko O., Gordeeva E., Arbuzova V., Börner A., Khlestkina E. The D genome carries a gene determining purple grain colour in wheat. Cereal Res. Commun. 2012;40(3):334­341. doi 10.1556/crc.40.2012.3.2

61. Tian S., Chen Z., Wei Y. Measurement of colour­grained wheat nutrient compounds and the application of combination technology in dough. J. Cereal Sci. 2018;83:63­67. doi 10.1016/j.jcs.2018.07.018

62. Varga M., Bánhidy J., Cseuz L., Matuz J. The anthocyanin content of blue and purple coloured wheat cultivars and their hybrid generations. Cereal Res. Commun. 2013;41(2):284­292. doi 10.1556/crc.41.2013.2.10

63. Vasilova N.Z., Askhadullin D.F., Askhadullin D.F., Bagavieva E.Z., Tazutdinova M.R., Khusainova I.I. Violet­green variety of spring soft wheat Nadira. Zernobobovye i Krupânye Kul’tury = Legumes Groat Crops. 2021;4(40):66­75. doi 10.24412/2309­348X­2021­4­66­75 (in Russian)

64. Wang X., Zhang X., Hou H., Ma X., Sun S., Wang H., Kong L. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Res. Int. 2020;138:109711. doi 10.1016/j.foodres.2020.109711

65. Zhang J., Ding Y., Dong H., Hou H., Zhang X. Distribution of phenolic acids and antioxidant activities of different bran fractions from three pigmented wheat varieties. J. Chem. 2018;1:459243. doi 10.1155/2018/6459243

66. Zheng Q., Li B., Mu S., Zhou H., Li Z. Physical mapping of the bluegrained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome. 2006;49(9):1109­1114. doi 10.1139/g06­073


Review

Views: 156


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)